Difference between revisions of "Strassen algorithm"

From MWiki
Jump to: navigation, search
m (Strassen algorithm for a square matrix)
 
Line 1: Line 1:
 
'''Strassen algorithm for a symmetric matrix:'''
 
'''Strassen algorithm for a symmetric matrix:'''
  
For a square [[w:Matrix (mathematics)|<span class="wikipedia">matrix</span>]] <math>A \in \mathbb{C}^{n \times n}</math> where <math>2^k := n, k \in \mathbb{N}^*</math>, the [[w:Runtime (program lifecycle phase)|<span class="wikipedia">runtime</span>]] <math>T_q(n)</math> of the [[w:Strassen algorithm|<span class="wikipedia">Strassen algorithm</span>]] for the [[w:Matrix multiplication|<span class="wikipedia">matrix product</span>]] <math>AA^T</math> is about <math>2/3</math> that of the original algorithm in <math>\mathcal{O}(n^{(_2 7)})</math>.
+
For a square [[w:Matrix (mathematics)|<span class="wikipedia">matrix</span>]] <math>A \in \mathbb{C}^{n \times n}</math> where sufficiently big <math>2^k := n, k \in \mathbb{N}^*</math>, the [[w:Runtime (program lifecycle phase)|<span class="wikipedia">runtime</span>]] <math>T_q(n)</math> of the [[w:Strassen algorithm|<span class="wikipedia">Strassen algorithm</span>]] for the [[w:Matrix multiplication|<span class="wikipedia">matrix product</span>]] <math>AA^T</math> roughly halves that of the original algorithm in <math>\mathcal{O}(n^{(_2 7)})</math>.
  
 
'''Proof:''' For <math>A :=  
 
'''Proof:''' For <math>A :=  
Line 13: Line 13:
 
\end{pmatrix}</math>.
 
\end{pmatrix}</math>.
  
The rate of usual matrix multiplications (top right) is <math>2/3.\square</math>
+
The [[w:Geometric series|<span class="wikipedia">geometric series</span>]] yields the claim because of the halvings above (see top right).<math>\square</math>
  
 
== See also ==
 
== See also ==

Latest revision as of 15:39, 29 September 2023

Strassen algorithm for a symmetric matrix:

For a square matrix [math]\displaystyle{ A \in \mathbb{C}^{n \times n} }[/math] where sufficiently big [math]\displaystyle{ 2^k := n, k \in \mathbb{N}^* }[/math], the runtime [math]\displaystyle{ T_q(n) }[/math] of the Strassen algorithm for the matrix product [math]\displaystyle{ AA^T }[/math] roughly halves that of the original algorithm in [math]\displaystyle{ \mathcal{O}(n^{(_2 7)}) }[/math].

Proof: For [math]\displaystyle{ A := \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} }[/math], it holds that [math]\displaystyle{ AA^T = \begin{pmatrix} A_{11}A_{11}^T+A_{12}A_{12}^T & A_{11}A_{21}^T+A_{12}A_{22}^T \\ A_{21}A_{11}^T+A_{22}A_{12}^T & A_{21}A_{21}^T+A_{22}A_{22}^T \end{pmatrix} }[/math].

The geometric series yields the claim because of the halvings above (see top right).[math]\displaystyle{ \square }[/math]

See also

List of mathematical symbols