List of mathematical symbols

From MWiki
Jump to: navigation, search

The following mathematical symbols are used differently from Wikipedia:

Symbol Usage Interpretation Article LaTeX HTML Unicode
[math]\displaystyle{ \widetilde{} }[/math] [math]\displaystyle{ \tilde{a} }[/math] Reciprocal of [math]\displaystyle{ a }[/math]: [math]\displaystyle{ 1/a }[/math] resp. [math]\displaystyle{ a^{-1} }[/math] for [math]\displaystyle{ a \ne 0 }[/math] (read as "turn") Reciprocal \widetilde{} U+007E
[math]\displaystyle{ \acute{} }[/math] [math]\displaystyle{ \acute{a} }[/math] Increment of [math]\displaystyle{ a }[/math]: [math]\displaystyle{ a - 1 }[/math] (read as "dec") Increment \acute{} U+00B4
[math]\displaystyle{ \overset{\scriptsize{\grave{}}}{} }[/math] [math]\displaystyle{ \overset{\scriptsize{\grave{}}}{a} }[/math] Decrement of [math]\displaystyle{ a }[/math]: [math]\displaystyle{ a + 1 }[/math] (read as "inc") Decrement \grave{} U+0060
[math]\displaystyle{ \widehat{} }[/math] [math]\displaystyle{ \hat{a} }[/math] Double of [math]\displaystyle{ a }[/math]: [math]\displaystyle{ 2a }[/math] (read as "hat") Double \widehat{} U+0302
[math]\displaystyle{ \check{} }[/math] [math]\displaystyle{ \check{a} }[/math] Half of [math]\displaystyle{ a }[/math]: [math]\displaystyle{ a/2 }[/math] (read as "half") One half \widecheck{} U+02C7
[math]\displaystyle{ \text{-} }[/math] [math]\displaystyle{ a\text{-} }[/math] [math]\displaystyle{ a }[/math] negated: [math]\displaystyle{ a\text{-} }[/math] (read as "neg") Minus sign \text{-} U+002D
_ [math]\displaystyle{ z = a + \underline{b} }[/math] Complex part of [math]\displaystyle{ z }[/math]: [math]\displaystyle{ \underline{1}b }[/math] with imaginary unit [math]\displaystyle{ \underline{1} }[/math] (read as "comp") Imaginary unit \underline{} U+005F
[math]\displaystyle{ \nu }[/math] [math]\displaystyle{ {}^{\nu} A }[/math] greatest        finite number: intersection of the complex or real set [math]\displaystyle{ A }[/math] for [math]\displaystyle{ {}^{\nu}\mathbb{C} := [-\nu, \; \nu] + \underline{1}[-\nu, \nu] }[/math] Finite number \nu ν U+03BD
[math]\displaystyle{ \omega }[/math] [math]\displaystyle{ {}^{\omega} A }[/math] greatest mid-finite number: intersection of the complex or real set [math]\displaystyle{ A }[/math] for [math]\displaystyle{ {}^{\omega}\mathbb{C} := [-\omega, \omega] + \underline{1}[-\omega, \omega] }[/math] Infinite number \omega ω U+03C9
[math]\displaystyle{ \iota }[/math] [math]\displaystyle{ \iota = \min \mathbb{R}_{\gt 0} }[/math] smallest positive real number Positive number \iota ι U+03B9
[math]\displaystyle{ {}^n }[/math] [math]\displaystyle{ {}^n a = a^{(n)} }[/math] [math]\displaystyle{ n }[/math]-th derivative of [math]\displaystyle{ a }[/math] (read as "n of a") Derivative {}^n
[math]\displaystyle{ {}_b }[/math] [math]\displaystyle{ {}_b a = \log_b a }[/math] Logarithm to base [math]\displaystyle{ b }[/math] for [math]\displaystyle{ a \in \mathbb{C} \setminus \mathbb{R}_{\le 0} }[/math] (read as "b log a") Logarithm {}_b
[math]\displaystyle{ {}_1 }[/math] [math]\displaystyle{ {}_1 x = x/||x|| }[/math] Unit vector to [math]\displaystyle{ x \ne 0 }[/math] Unit vector {}_1
[math]\displaystyle{ \infty }[/math] [math]\displaystyle{ \infty \gg \tilde{\iota}^2 }[/math] Replacing [math]\displaystyle{ \pm0 }[/math] by [math]\displaystyle{ \pm\widetilde{\infty} }[/math] Infinity \infty ∞ U+221E
[math]\displaystyle{ {}^{\pm} }[/math] [math]\displaystyle{ {}^{\pm}A = A \cup \{\pm\infty\} }[/math] Extended complex (real) set [math]\displaystyle{ A \subseteq \mathbb{K} }[/math] Extended real number line \pm ± U+00B1
[math]\displaystyle{ \mathbb M }[/math] [math]\displaystyle{ {\mathbb{M}}_{\mathbb{R}} = {}^{\omega}{\mathbb{R}} \setminus {}^{\nu}{\mathbb{R}} }[/math] mid-finite numbers: [math]\displaystyle{ {\mathbb{M}}_{\mathbb{C}} := {\mathbb{M}}_{\mathbb{R}} + \underline{\mathbb{M}}_{\mathbb{R}} }[/math] Infinite set \mathbb{M} 𝕄 U+1D544
[math]\displaystyle{ {}^{\dot{}} }[/math] [math]\displaystyle{ \dot{A} }[/math] point-symmetric set [math]\displaystyle{ A }[/math] Point symmetry \dot ˙ U+02D9
[math]\displaystyle{ {}^{\ll} }[/math] [math]\displaystyle{ A^{\ll} }[/math] Set [math]\displaystyle{ A }[/math] without boundary [math]\displaystyle{ \partial A }[/math] given by min [math]\displaystyle{ \{d(x, y) : x \in A°, y \in A^{\prime}\} = \tilde{\nu} }[/math] Boundary {}^{\ll} ≪ U+226A
[math]\displaystyle{ ' }[/math] [math]\displaystyle{ A' }[/math] Complement of the set [math]\displaystyle{ A }[/math] Complement \prime U+0027
[math]\displaystyle{ \complement }[/math] [math]\displaystyle{ \complement_1^n\ a_m }[/math] Concatenation of [math]\displaystyle{ a_m }[/math] to [math]\displaystyle{ a_1, ..., a_n }[/math] Concatenation operator \complement ∁ U+2201
[math]\displaystyle{ \leftharpoonup }[/math] [math]\displaystyle{ \overset{\leftharpoonup}{a} }[/math] Predecessor of [math]\displaystyle{ a }[/math] (read as "pre") Predecessor \leftharpoonup U+21BC
[math]\displaystyle{ \rightharpoonup }[/math] [math]\displaystyle{ \overset{\rightharpoonup}{a} }[/math] Successor of [math]\displaystyle{ a }[/math] (read as "post") Successor \rightharpoonup U+21C0
[math]\displaystyle{ \upharpoonleft }[/math] [math]\displaystyle{ a{\upharpoonleft}_n }[/math] [math]\displaystyle{ n }[/math]-fold repetition of [math]\displaystyle{ a }[/math] in the form [math]\displaystyle{ (a, ... , a)^T }[/math] (read as "rep") Repetition \upharpoonleft U+21BF
[math]\displaystyle{ \upharpoonright }[/math] [math]\displaystyle{ a{\upharpoonright}_n }[/math] Projection of [math]\displaystyle{ (a_1, ... , a_n)^T }[/math] onto the [math]\displaystyle{ k }[/math]-th entry [math]\displaystyle{ a_k }[/math] (read as "proj") Projection \upharpoonright U+21BE
[math]\displaystyle{ \downarrow }[/math] [math]\displaystyle{ \downarrow {x} }[/math] Differential of [math]\displaystyle{ x }[/math] (read as "down") Differential \downarrow ↓ U+8595
[math]\displaystyle{ \uparrow }[/math] [math]\displaystyle{ \uparrow f(x) }[/math] Integral of [math]\displaystyle{ f(x) }[/math] (read as "up") Integral \uparrow ↑ U+8593
[math]\displaystyle{ \Box }[/math] End of proof Proof \Box U+25A1
[math]\displaystyle{ \triangle }[/math] End of definition Definition \triangle Δ U+2206

See also