List of mathematical symbols
The following mathematical symbols are used differently from Wikipedia:
Symbol | Usage | Interpretation | Article | LaTeX | HTML | Unicode |
---|---|---|---|---|---|---|
[math]\displaystyle{ \widetilde{} }[/math] | [math]\displaystyle{ \tilde{a} }[/math] | Reciprocal of [math]\displaystyle{ a }[/math]: [math]\displaystyle{ 1/a }[/math] resp. [math]\displaystyle{ a^{-1} }[/math] for [math]\displaystyle{ a \ne 0 }[/math] (read as "turn") | Reciprocal | \widetilde{}
|
U+007E
| |
[math]\displaystyle{ \acute{} }[/math] | [math]\displaystyle{ \acute{a} }[/math] | Increment of [math]\displaystyle{ a }[/math]: [math]\displaystyle{ a - 1 }[/math] (read as "dec") | Increment | \acute{}
|
U+00B4
| |
[math]\displaystyle{ \overset{\scriptsize{\grave{}}}{} }[/math] | [math]\displaystyle{ \overset{\scriptsize{\grave{}}}{a} }[/math] | Decrement of [math]\displaystyle{ a }[/math]: [math]\displaystyle{ a + 1 }[/math] (read as "inc") | Decrement | \grave{}
|
U+0060
| |
[math]\displaystyle{ \widehat{} }[/math] | [math]\displaystyle{ \hat{a} }[/math] | Double of [math]\displaystyle{ a }[/math]: [math]\displaystyle{ 2a }[/math] (read as "hat") | Double | \widehat{}
|
U+0302
| |
[math]\displaystyle{ \check{} }[/math] | [math]\displaystyle{ \check{a} }[/math] | Half of [math]\displaystyle{ a }[/math]: [math]\displaystyle{ a/2 }[/math] (read as "half") | One half | \widecheck{}
|
U+02C7
| |
[math]\displaystyle{ \text{-} }[/math] | [math]\displaystyle{ a\text{-} }[/math] | [math]\displaystyle{ a }[/math] negated: [math]\displaystyle{ a\text{-} }[/math] (read as "neg") | Minus sign | \text{-}
|
U+002D
| |
_ | [math]\displaystyle{ z = a + \underline{b} }[/math] | Complex part of [math]\displaystyle{ z }[/math]: [math]\displaystyle{ \underline{1}b }[/math] with imaginary unit [math]\displaystyle{ \underline{1} }[/math] (read as "comp") | Imaginary unit | \underline{}
|
U+005F
| |
[math]\displaystyle{ \nu }[/math] | [math]\displaystyle{ {}^{\nu} A }[/math] | greatest finite number: intersection of the complex or real set [math]\displaystyle{ A }[/math] for [math]\displaystyle{ {}^{\nu}\mathbb{C} := [-\nu, \; \nu] + \underline{1}[-\nu, \nu] }[/math] | Finite number | \nu
|
ν
|
U+03BD
|
[math]\displaystyle{ \omega }[/math] | [math]\displaystyle{ {}^{\omega} A }[/math] | greatest mid-finite number: intersection of the complex or real set [math]\displaystyle{ A }[/math] for [math]\displaystyle{ {}^{\omega}\mathbb{C} := [-\omega, \omega] + \underline{1}[-\omega, \omega] }[/math] | Infinite number | \omega
|
ω
|
U+03C9
|
[math]\displaystyle{ \iota }[/math] | [math]\displaystyle{ \iota = \min \mathbb{R}_{\gt 0} }[/math] | smallest positive real number | Positive number | \iota
|
ι
|
U+03B9
|
[math]\displaystyle{ {}^n }[/math] | [math]\displaystyle{ {}^n a = a^{(n)} }[/math] | [math]\displaystyle{ n }[/math]-th derivative of [math]\displaystyle{ a }[/math] (read as "n of a") | Derivative | {}^n
|
||
[math]\displaystyle{ {}_b }[/math] | [math]\displaystyle{ {}_b a = \log_b a }[/math] | Logarithm to base [math]\displaystyle{ b }[/math] for [math]\displaystyle{ a \in \mathbb{C} \setminus \mathbb{R}_{\le 0} }[/math] (read as "b log a") | Logarithm | {}_b
|
||
[math]\displaystyle{ {}_1 }[/math] | [math]\displaystyle{ {}_1 x = x/||x|| }[/math] | Unit vector to [math]\displaystyle{ x \ne 0 }[/math] | Unit vector | {}_1
|
||
[math]\displaystyle{ \infty }[/math] | [math]\displaystyle{ \infty \gg \tilde{\iota}^2 }[/math] | Replacing [math]\displaystyle{ \pm0 }[/math] by [math]\displaystyle{ \pm\widetilde{\infty} }[/math] | Infinity | \infty
|
∞
|
U+221E
|
[math]\displaystyle{ {}^{\pm} }[/math] | [math]\displaystyle{ {}^{\pm}A = A \cup \{\pm\infty\} }[/math] | Extended complex (real) set [math]\displaystyle{ A \subseteq \mathbb{K} }[/math] | Extended real number line | \pm
|
±
|
U+00B1
|
[math]\displaystyle{ \mathbb M }[/math] | [math]\displaystyle{ {\mathbb{M}}_{\mathbb{R}} = {}^{\omega}{\mathbb{R}} \setminus {}^{\nu}{\mathbb{R}} }[/math] | mid-finite numbers: [math]\displaystyle{ {\mathbb{M}}_{\mathbb{C}} := {\mathbb{M}}_{\mathbb{R}} + \underline{\mathbb{M}}_{\mathbb{R}} }[/math] | Infinite set | \mathbb{M}
|
𝕄
|
U+1D544
|
[math]\displaystyle{ {}^{\dot{}} }[/math] | [math]\displaystyle{ \dot{A} }[/math] | point-symmetric set [math]\displaystyle{ A }[/math] | Point symmetry | \dot
|
˙
|
U+02D9
|
[math]\displaystyle{ {}^{\ll} }[/math] | [math]\displaystyle{ A^{\ll} }[/math] | Set [math]\displaystyle{ A }[/math] without boundary [math]\displaystyle{ \partial A }[/math] given by min [math]\displaystyle{ \{d(x, y) : x \in A°, y \in A^{\prime}\} = \tilde{\nu} }[/math] | Boundary | {}^{\ll}
|
≪
|
U+226A
|
[math]\displaystyle{ ' }[/math] | [math]\displaystyle{ A' }[/math] | Complement of the set [math]\displaystyle{ A }[/math] | Complement | \prime
|
U+0027
| |
[math]\displaystyle{ \complement }[/math] | [math]\displaystyle{ \complement_1^n\ a_m }[/math] | Concatenation of [math]\displaystyle{ a_m }[/math] to [math]\displaystyle{ a_1, ..., a_n }[/math] | Concatenation operator | \complement
|
∁
|
U+2201
|
[math]\displaystyle{ \leftharpoonup }[/math] | [math]\displaystyle{ \overset{\leftharpoonup}{a} }[/math] | Predecessor of [math]\displaystyle{ a }[/math] (read as "pre") | Predecessor | \leftharpoonup
|
U+21BC
| |
[math]\displaystyle{ \rightharpoonup }[/math] | [math]\displaystyle{ \overset{\rightharpoonup}{a} }[/math] | Successor of [math]\displaystyle{ a }[/math] (read as "post") | Successor | \rightharpoonup
|
U+21C0
| |
[math]\displaystyle{ \upharpoonleft }[/math] | [math]\displaystyle{ a{\upharpoonleft}_n }[/math] | [math]\displaystyle{ n }[/math]-fold repetition of [math]\displaystyle{ a }[/math] in the form [math]\displaystyle{ (a, ... , a)^T }[/math] (read as "rep") | Repetition | \upharpoonleft
|
U+21BF
| |
[math]\displaystyle{ \upharpoonright }[/math] | [math]\displaystyle{ a{\upharpoonright}_n }[/math] | Projection of [math]\displaystyle{ (a_1, ... , a_n)^T }[/math] onto the [math]\displaystyle{ k }[/math]-th entry [math]\displaystyle{ a_k }[/math] (read as "proj") | Projection | \upharpoonright
|
U+21BE
| |
[math]\displaystyle{ \downarrow }[/math] | [math]\displaystyle{ \downarrow {x} }[/math] | Differential of [math]\displaystyle{ x }[/math] (read as "down") | Differential | \downarrow
|
↓
|
U+8595
|
[math]\displaystyle{ \uparrow }[/math] | [math]\displaystyle{ \uparrow f(x) }[/math] | Integral of [math]\displaystyle{ f(x) }[/math] (read as "up") | Integral | \uparrow
|
↑
|
U+8593
|
[math]\displaystyle{ \Box }[/math] | End of proof | Proof | \Box
|
U+25A1
| ||
[math]\displaystyle{ \triangle }[/math] | End of definition | Definition | \triangle
|
Δ
|
U+2206
|