Difference between revisions of "Strassen algorithm"

From MWiki
Jump to: navigation, search
Line 7: Line 7:
 
   A_{11} & A_{12} \\
 
   A_{11} & A_{12} \\
 
   A_{21} & A_{22}
 
   A_{21} & A_{22}
   \end{pmatrix}</math>, it holds that <math>A^TA =
+
   \end{pmatrix}</math>, it holds that <math>AA^T =
 
   \begin{pmatrix}
 
   \begin{pmatrix}
 
   A_{11}A_{11}^T+A_{12}A_{12}^T & A_{11}A_{21}^T+A_{12}A_{22}^T \\
 
   A_{11}A_{11}^T+A_{12}A_{12}^T & A_{11}A_{21}^T+A_{12}A_{22}^T \\

Revision as of 05:28, 1 April 2023

Strassen algorithm for a symmetric matrix:

For a square matrix [math]\displaystyle{ A \in \mathbb{C}^{n \times n} }[/math] where [math]\displaystyle{ 2^k := n, k \in \mathbb{N}^* }[/math], the runtime [math]\displaystyle{ T_q(n) }[/math] of the Strassen algorithm for the matrix product [math]\displaystyle{ AA^T }[/math] is about [math]\displaystyle{ 2/3 }[/math] that of the original algorithm in [math]\displaystyle{ \mathcal{O}(n^{(_2 7)}) }[/math].

Proof: For [math]\displaystyle{ A := \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} }[/math], it holds that [math]\displaystyle{ AA^T = \begin{pmatrix} A_{11}A_{11}^T+A_{12}A_{12}^T & A_{11}A_{21}^T+A_{12}A_{22}^T \\ A_{21}A_{11}^T+A_{22}A_{12}^T & A_{21}A_{21}^T+A_{22}A_{22}^T \end{pmatrix} }[/math].

The rate of usual matrix multiplications (top right) is [math]\displaystyle{ 2/3.\square }[/math]

See also

List of mathematical symbols