Difference between revisions of "Strassen algorithm"

From MWiki
Jump to: navigation, search
(Strassen algorithm)
Line 11: Line 11:
 
   A_{11}A_{11}^T+A_{12}A_{12}^T & A_{11}A_{21}^T+A_{12}A_{22}^T \\
 
   A_{11}A_{11}^T+A_{12}A_{12}^T & A_{11}A_{21}^T+A_{12}A_{22}^T \\
 
   A_{21}A_{11}^T+A_{22}A_{12}^T & A_{21}A_{21}^T+A_{22}A_{22}^T
 
   A_{21}A_{11}^T+A_{22}A_{12}^T & A_{21}A_{21}^T+A_{22}A_{22}^T
\end{pmatrix}</math> and <math>T_q(2n) = 4T_q(n) + 2n^{(_2 7)}</math> or <math>T_q(n) = 4T_q(n/2) + 2/7n^{(_2 7)}</math>.
+
\end{pmatrix}</math>.
  
The [[w:Geometric series|<span class="wikipedia">geometric series</span>]] yields because of <math>T_q(1) = 1</math>: <math>T_q(n) = 64T_q(n/8) + 2/7n^{(_2 7)}(1+4/7 + (4/7)^2 + ...) = 2/7n^{(_2 7)} (1-(4/7)^{(_2n)})/(1-4/7) = 2/3n^{(_2 7)}.\square</math>
+
The rate of usual matrix multiplications is <math>2/3.\square</math>
  
 
== See also ==
 
== See also ==

Revision as of 04:29, 1 April 2023

Strassen algorithm for a symmetric matrix:

For a square matrix [math]\displaystyle{ A \in \mathbb{C}^{n \times n} }[/math] where [math]\displaystyle{ 2^k := n, k \in \mathbb{N}^* }[/math], the runtime [math]\displaystyle{ T_q(n) }[/math] of the Strassen algorithm for the matrix product [math]\displaystyle{ AA^T }[/math] is about [math]\displaystyle{ 2/3 }[/math] that of the original algorithm in [math]\displaystyle{ \mathcal{O}(n^{(_2 7)}) }[/math].

Proof: For [math]\displaystyle{ A := \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} }[/math], it holds that [math]\displaystyle{ A^TA = \begin{pmatrix} A_{11}A_{11}^T+A_{12}A_{12}^T & A_{11}A_{21}^T+A_{12}A_{22}^T \\ A_{21}A_{11}^T+A_{22}A_{12}^T & A_{21}A_{21}^T+A_{22}A_{22}^T \end{pmatrix} }[/math].

The rate of usual matrix multiplications is [math]\displaystyle{ 2/3.\square }[/math]

See also

List of mathematical symbols