Difference between revisions of "Multinomial theorem"

From MWiki
Jump to: navigation, search
m
(Binomial series, multinomial theorem and general Leibniz formula)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
=== Theorem (binomial series) ===
 
=== Theorem (binomial series) ===
From <math>\alpha \in {}^{(\nu)}\mathbb{C}, \binom{\alpha}{n}:=\widetilde{n!}\alpha\acute{\alpha}...(\grave{\alpha}-n)</math> and <math>\left|\binom{\alpha}{\grave{m}}/\binom{\alpha}{m}\right|&lt;1</math> for all <math>m \ge \nu</math> and <math>\binom{\alpha}{0}:=1</math>, it follows for <math>z \in \mathbb{D}^\ll</math> or <math>z \in {}^{(\omega)}\mathbb{C}</math> for <math>\alpha \in {}^{(\omega)}\mathbb{N}</math> the [[w:Taylor series|<span class="wikipedia">Taylor series</span>]] centred on 0 by [[w:Differential calculus|<span class="wikipedia">derivating</span>]]
+
From <math>alpha \in {}^{(\nu)}\mathbb{C}, \binom{\alpha}{n}:=\widetilde{n!}\alpha\acute{\alpha}...(\grave{\alpha}-n)</math> and <math>\left|\binom{\alpha}{\grave{m}}/\binom{\alpha}{m}\right|&lt;1</math> for all <math>m \ge \nu</math> and <math>\binom{\alpha}{0}:=1</math>, it follows for <math>z \in \mathbb{D}^\ll</math> or <math>z \in {}^{(\omega)}\mathbb{C}</math> for <math>\alpha \in {}^{(\omega)}\mathbb{N}</math> the [[w:Taylor series|<span class="wikipedia">Taylor series</span>]] centred on 0 that
  
<div style="text-align:center;"><math>{\grave{z}}^\alpha={+}_{n=0}^{\omega}{\binom{\alpha}{n}z^n}.\square</math></div>
+
<div style="text-align:center;"><math>{\grave{z}}^\alpha={+}_{n=0}^{\omega}{\tbinom{\alpha}{n}z^n}.\square</math></div>
  
 
=== Multinomial theorem ===
 
=== Multinomial theorem ===
For <math>z, \zeta \in {}^{(\omega)}\mathbb{C}^{k}, n^T \in {}^{(\omega)}\mathbb{N}^{k}, k, m \in {}^{\omega}\mathbb{N}^{*}, z^n := z_1^{n_1} ... z_k^{n_k}</math> and <math>\binom{m}{n} := \widetilde{n_1! ... {n}_k!}m!\;(k \ge 2)</math>, it holds that
+
For <math>\zeta \in {}^{(\omega)}\mathbb{C}, z \in {}^{(\omega)}\mathbb{C}^{k}, k \in {}^{(\omega)}\mathbb{N}_{\ge 2}, m, n_j \in {}^{\omega}\mathbb{N}^{*}, |n| := {+}_{j=1}^{k}{n_j}, z^n := {\times}_{j=1}^{k}{{z_j}^{n_j}}</math> and <math>\tbinom{m}{n} := \widetilde{n_1! ... {n}_k!}m!</math>, it holds that
  
<div style="text-align:center;"><math>\left({\underline{1}}_k^Tz\right)^m={+}_{n\underline{1}_k=m}{\binom{m}{n}z^n}.</math></div>
+
<div style="text-align:center;"><math>(1{\upharpoonright}_k^Tz)^m={+}_{|n|=m}{\tbinom{m}{n}z^n}.</math></div>
  
 
==== Proof: ====
 
==== Proof: ====
Cases <math>k \in \{1, 2\}</math> are clear. [[w:Mathematical induction|<span class="wikipedia">Induction step</span>]] from <math>k</math> to <math>\grave{k}</math> by summarising the last two summands for <math>p \in {}^{\omega}\mathbb{N}</math>:
+
Cases <math>k \in \{1, 2\}</math> are clear. [[w:Mathematical induction|<span class="wikipedia">Induction step</span>]] from <math>k</math> to <math>\grave{k}</math> where <math>\tbinom{m}{n} = \tbinom{m}{n_1, ...,n_{\acute{k}},p}\tbinom{p}{n_k, n_{\grave{k}}}</math> and <math>p=n_k+n_{\grave{k}}</math>:
  
<div style="text-align:center;"><math>({(1,z^T){\underline{1}}_{\grave{k}})}^m={+}_{{(n_0,n)\underline{1}}_{\grave{k}}=m}{\binom{m}{n_0,n}z^n}</math> because of <math>\binom{m}{n_1,...,n_{k-2},p} \binom{p}{n_{\grave{k}},n_k} = \binom{m}{n_1,...,n_k}.</math></div>
+
<div style="text-align:center;"><math>\left.{({1{\upharpoonright}_{\grave{k}}^Tz})^m}\right |_{\zeta_{k}=z_k+z_{\grave{k}}}=\left.{+}_{|n|=m}{\tbinom{m}{n}z^n}\right |_{{\eta}_k!={n_k!}{n_{\grave{k}}!}} = {+}_{|n|=m}{\tbinom{m}{n}z^n}</math> resp. from <math>m</math> to <math>\grave{m}</math></div>:
  
Induction step from <math>m</math> to <math>\grave{m}</math> for <math>\grave{n} := n+(1,0, ... ,0)</math> by individual [[w:Integral|<span class="wikipedia">integration</span>]]:
+
<div style="text-align:center;"><math>(1{\upharpoonright}_{k}^T z)^{\grave{m}} =\grave{m}{\uparrow}_{0}^{z_j}\left.{(1{\upharpoonright}_{k}^T z)}^m\right |_{z_j=\zeta}{{\downarrow}\zeta}+\left.(1{\upharpoonright}_{k}^T z)^{\grave{m}} \right |_{z_j=0}=\left.\grave{m}{\uparrow}_{0}^{z_j}{+}_{|n|=m}{\tbinom{m}{n}z^{n}}\right |_{z_j=\zeta}{{\downarrow}\zeta}+\left.(1{\upharpoonright}_{k}^T z)^{\grave{m}} \right |_{z_j=0}={+}_{|\grave{n}|=\grave{m}}{\tbinom{\grave{m}}{\grave{n}}z^{\grave{n}}}.\square</math></div>
  
<div style="text-align:center;"><math>{\grave{m}{\uparrow}_{0}^{\zeta_1}{\left({\underline{1}}_k^Tz\right)^m{\downarrow}z_1}=\left.\left({\underline{1}}_k^T\zeta\right)^{\grave{m}}\right|_0^{{\zeta}_1}={+}_{{\grave{n}}{\underline{1}}_k=\grave{m}}\binom{\grave{m}}{\grave{n}}z^{\grave{n}}}.\square</math></div>
+
=== General Leibniz formula ===
 +
Putting <math>{\downarrow}^n := {\downarrow}_1^{n_1}...{\downarrow}_k^{n_k}</math> and <math>{\downarrow}_j^{n_j} := {\downarrow}^{n_j}/{\downarrow}{z_j}^{n_j}</math>, it follows for <math>j, k, m, n \in {}^{(\omega)}\mathbb{N}</math> and differentiable <math>f = f_1\cdot...\cdot f_k \in {}^{(\omega)}\mathbb{C}</math> from the multinomial theorem that
  
=== General Leibniz formula===
+
<div style="text-align:center;"><math>{\downarrow}^mf = {+}_{|n|=m}{\binom{m}{n}{\downarrow}^nf}.\square</math></div>
For <math>{\downarrow}^n := {\downarrow}_1^{n_1}...{\downarrow}_k^{n_k}</math> and <math>{\downarrow}_j^{n_j} := {\downarrow}^{n_j}/{\downarrow}{z_j}^{n_j}</math>, it follows for <math>m^T, n^T \in {}^{(\omega)}\mathbb{N}^{k}, j, k \in {}^{(\omega)}\mathbb{N}^*</math> and differentiable <math>f = f_1\cdot...\cdot f_k \in {}^{(\omega)}\mathbb{C}</math> from the multinomial theorem that
 
 
 
<div style="text-align:center;"><math>{\downarrow}^mf = {+}_{n\underline{1}_k=||m||_1}{\binom{||m||_1}{n}{\downarrow}^nf}.\square</math></div>
 
  
 
== See also ==
 
== See also ==

Revision as of 16:48, 29 September 2023

Theorem (binomial series)

From [math]\displaystyle{ alpha \in {}^{(\nu)}\mathbb{C}, \binom{\alpha}{n}:=\widetilde{n!}\alpha\acute{\alpha}...(\grave{\alpha}-n) }[/math] and [math]\displaystyle{ \left|\binom{\alpha}{\grave{m}}/\binom{\alpha}{m}\right|<1 }[/math] for all [math]\displaystyle{ m \ge \nu }[/math] and [math]\displaystyle{ \binom{\alpha}{0}:=1 }[/math], it follows for [math]\displaystyle{ z \in \mathbb{D}^\ll }[/math] or [math]\displaystyle{ z \in {}^{(\omega)}\mathbb{C} }[/math] for [math]\displaystyle{ \alpha \in {}^{(\omega)}\mathbb{N} }[/math] the Taylor series centred on 0 that

[math]\displaystyle{ {\grave{z}}^\alpha={+}_{n=0}^{\omega}{\tbinom{\alpha}{n}z^n}.\square }[/math]

Multinomial theorem

For [math]\displaystyle{ \zeta \in {}^{(\omega)}\mathbb{C}, z \in {}^{(\omega)}\mathbb{C}^{k}, k \in {}^{(\omega)}\mathbb{N}_{\ge 2}, m, n_j \in {}^{\omega}\mathbb{N}^{*}, |n| := {+}_{j=1}^{k}{n_j}, z^n := {\times}_{j=1}^{k}{{z_j}^{n_j}} }[/math] and [math]\displaystyle{ \tbinom{m}{n} := \widetilde{n_1! ... {n}_k!}m! }[/math], it holds that

[math]\displaystyle{ (1{\upharpoonright}_k^Tz)^m={+}_{|n|=m}{\tbinom{m}{n}z^n}. }[/math]

Proof:

Cases [math]\displaystyle{ k \in \{1, 2\} }[/math] are clear. Induction step from [math]\displaystyle{ k }[/math] to [math]\displaystyle{ \grave{k} }[/math] where [math]\displaystyle{ \tbinom{m}{n} = \tbinom{m}{n_1, ...,n_{\acute{k}},p}\tbinom{p}{n_k, n_{\grave{k}}} }[/math] and [math]\displaystyle{ p=n_k+n_{\grave{k}} }[/math]:

[math]\displaystyle{ \left.{({1{\upharpoonright}_{\grave{k}}^Tz})^m}\right |_{\zeta_{k}=z_k+z_{\grave{k}}}=\left.{+}_{|n|=m}{\tbinom{m}{n}z^n}\right |_{{\eta}_k!={n_k!}{n_{\grave{k}}!}} = {+}_{|n|=m}{\tbinom{m}{n}z^n} }[/math] resp. from [math]\displaystyle{ m }[/math] to [math]\displaystyle{ \grave{m} }[/math]

:

[math]\displaystyle{ (1{\upharpoonright}_{k}^T z)^{\grave{m}} =\grave{m}{\uparrow}_{0}^{z_j}\left.{(1{\upharpoonright}_{k}^T z)}^m\right |_{z_j=\zeta}{{\downarrow}\zeta}+\left.(1{\upharpoonright}_{k}^T z)^{\grave{m}} \right |_{z_j=0}=\left.\grave{m}{\uparrow}_{0}^{z_j}{+}_{|n|=m}{\tbinom{m}{n}z^{n}}\right |_{z_j=\zeta}{{\downarrow}\zeta}+\left.(1{\upharpoonright}_{k}^T z)^{\grave{m}} \right |_{z_j=0}={+}_{|\grave{n}|=\grave{m}}{\tbinom{\grave{m}}{\grave{n}}z^{\grave{n}}}.\square }[/math]

General Leibniz formula

Putting [math]\displaystyle{ {\downarrow}^n := {\downarrow}_1^{n_1}...{\downarrow}_k^{n_k} }[/math] and [math]\displaystyle{ {\downarrow}_j^{n_j} := {\downarrow}^{n_j}/{\downarrow}{z_j}^{n_j} }[/math], it follows for [math]\displaystyle{ j, k, m, n \in {}^{(\omega)}\mathbb{N} }[/math] and differentiable [math]\displaystyle{ f = f_1\cdot...\cdot f_k \in {}^{(\omega)}\mathbb{C} }[/math] from the multinomial theorem that

[math]\displaystyle{ {\downarrow}^mf = {+}_{|n|=m}{\binom{m}{n}{\downarrow}^nf}.\square }[/math]

See also