Difference between revisions of "Leibniz integral rule"

From MWiki
Jump to: navigation, search
m
(Leibniz integral rule)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
For <math>f: {}^{(\omega)}\mathbb{K}^{n+1} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright B x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math> and <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math>, choosing <math>\curvearrowright D a(x) = a(\curvearrowright B x)</math> and <math>\curvearrowright D b(x) = b(\curvearrowright B x)</math>,
+
=== Leibniz integral rule ===
 +
For <math>f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, {}^\curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math> and <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math>, choosing <math>{}^\curvearrowright a(x) = a({}^\curvearrowright x)</math> and <math>{}^\curvearrowright b(x) = b({}^\curvearrowright x)</math>, it holds that
  
<div style="text-align:center;"><math>\frac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)={\uparrow}_{a(x)}^{b(x)}{\frac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\frac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\frac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)).</math></div>
+
<div style="text-align:center;"><math>\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f({}^\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f({}^\curvearrowright x,a(x)).</math></div>
  
=== Beweis ===
+
=== Proof ===
<div style="text-align:center; font-size: 84%;"><math>\begin{aligned}\frac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right) &amp;={\left( {\uparrow}_{a(\curvearrowright Bx)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &amp;={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright Bx,t)-f(x,t)){\downarrow}Dt}+{\uparrow}_{b(x)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{a(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &amp;={\uparrow}_{a(x)}^{b(x)}{\frac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}dDt}+\frac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\frac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)).\square\end{aligned}</math></div>
+
<div style="text-align:center; font-size: 84%;"><math>\begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &amp;={\left( {\uparrow}_{a({}^\curvearrowright x)}^{b({}^\curvearrowright x)}{f({}^\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &amp;={\left( {\uparrow}_{a(x)}^{b(x)}{(f({}^\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b({}^\curvearrowright x)}{f({}^\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a({}^\curvearrowright x)}{f({}^\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &amp;={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f({}^\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f({}^\curvearrowright x,a(x)).\square\end{aligned}</math></div>
  
 
=== Remark ===
 
=== Remark ===
Integrating happens in the complex plane over a [[w:Path (topology)|<span class="wikipedia">path</span>]] whose start and end points are the limits of integration. If <math>\curvearrowright D a(x) \ne a(\curvearrowright B x)</math>, then the final summand must be multiplied by <math>(\curvearrowright D a(x) - a(x))/(a(\curvearrowright B x) - a(x))</math>, and if <math>\curvearrowright D b(x) \ne b(\curvearrowright B x)</math>, then the penultimate summand must be multiplied by <math>(\curvearrowright D b(x) - b(x))/(b(\curvearrowright B x) - b(x))</math>.
+
Complex integration allows a [[w:Path (topology)|<span class="wikipedia">path</span>]] whose start and end points are the limits of integration. If <math>{}^\curvearrowright b(x) \ne b({}^\curvearrowright x)</math>, then multiply the final summand by <math>({}^\curvearrowright a(x) - a(x))/(a({}^\curvearrowright x) - a(x))</math>, and if <math>{}^\curvearrowright b(x) \ne b({}^\curvearrowright x)</math>, then the penultimate summand must be multiplied by <math>({}^\curvearrowright b(x) - b(x))/(b({}^\curvearrowright x) - b(x))</math>.
  
 
== Siehe auch ==
 
== Siehe auch ==

Revision as of 16:00, 29 September 2023

Leibniz integral rule

For [math]\displaystyle{ f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, {}^\curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T} }[/math] and [math]\displaystyle{ s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\} }[/math], choosing [math]\displaystyle{ {}^\curvearrowright a(x) = a({}^\curvearrowright x) }[/math] and [math]\displaystyle{ {}^\curvearrowright b(x) = b({}^\curvearrowright x) }[/math], it holds that

[math]\displaystyle{ \tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f({}^\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f({}^\curvearrowright x,a(x)). }[/math]

Proof

[math]\displaystyle{ \begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &={\left( {\uparrow}_{a({}^\curvearrowright x)}^{b({}^\curvearrowright x)}{f({}^\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f({}^\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b({}^\curvearrowright x)}{f({}^\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a({}^\curvearrowright x)}{f({}^\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f({}^\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f({}^\curvearrowright x,a(x)).\square\end{aligned} }[/math]

Remark

Complex integration allows a path whose start and end points are the limits of integration. If [math]\displaystyle{ {}^\curvearrowright b(x) \ne b({}^\curvearrowright x) }[/math], then multiply the final summand by [math]\displaystyle{ ({}^\curvearrowright a(x) - a(x))/(a({}^\curvearrowright x) - a(x)) }[/math], and if [math]\displaystyle{ {}^\curvearrowright b(x) \ne b({}^\curvearrowright x) }[/math], then the penultimate summand must be multiplied by [math]\displaystyle{ ({}^\curvearrowright b(x) - b(x))/(b({}^\curvearrowright x) - b(x)) }[/math].

Siehe auch