Difference between revisions of "Leibniz integral rule"

From MWiki
Jump to: navigation, search
(Leibniz integral rule)
(Leibniz integral rule)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
=== Leibniz integral rule ===
 
=== Leibniz integral rule ===
For <math>f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, {}^\curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math> and <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math>, choosing <math>{}^\curvearrowright a(x) = a({}^\curvearrowright x)</math> and <math>{}^\curvearrowright b(x) = b({}^\curvearrowright x)</math>, it holds that
+
For <math>f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \overset{\rightharpoonup}{x} := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math> and <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math>, choosing <math>\overset{\rightharpoonup}{a}(x) = a(\overset{\rightharpoonup}{x})</math> aund <math>\overset{\rightharpoonup}{e}(x) = e(\overset{\rightharpoonup}{x})</math>, it holds that
  
<div style="text-align:center;"><math>\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f({}^\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f({}^\curvearrowright x,a(x)).</math></div>
+
<div style="text-align:center;"><math>\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{e(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{e(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} e(x)}{{\downarrow} {{x}_{1}}}f(\overset{\rightharpoonup}{x},e(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\overset{\rightharpoonup}{x},a(x)).</math></div>
  
=== Proof ===
+
=== Proof: ===
<div style="text-align:center; font-size: 84%;"><math>\begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &amp;={\left( {\uparrow}_{a({}^\curvearrowright x)}^{b({}^\curvearrowright x)}{f({}^\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &amp;={\left( {\uparrow}_{a(x)}^{b(x)}{(f({}^\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b({}^\curvearrowright x)}{f({}^\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a({}^\curvearrowright x)}{f({}^\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &amp;={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f({}^\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f({}^\curvearrowright x,a(x)).\square\end{aligned}</math></div>
+
<div style="text-align:center;"><math>\begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{e(x)}{f(x,t){\downarrow}t} \right) &amp; ={\left( {\uparrow}_{a(\overset{\rightharpoonup}{x})}^{e(\overset{\rightharpoonup}{x})}{f(\overset{\rightharpoonup}{x},t){\downarrow}t}-{\uparrow}_{a(x)}^{e(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &amp; ={\left( {\uparrow}_{a(x)}^{e(x)}{(f(\overset{\rightharpoonup}{x},t)-f(x,t)){\downarrow}t}+{\uparrow}_{e(x)}^{e(\overset{\rightharpoonup}{x})}{f(\overset{\rightharpoonup}{x},t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\overset{\rightharpoonup}{x})}{f(\overset{\rightharpoonup}{x},t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &amp; ={\uparrow}_{a(x)}^{e(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} e(x)}{{\downarrow} {{x}_{1}}}f(\overset{\rightharpoonup}{x},e(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\overset{\rightharpoonup}{x},a(x)).\square\end{aligned}</math></div>
  
 
=== Remark ===
 
=== Remark ===
Complex integration allows a [[w:Path (topology)|<span class="wikipedia">path</span>]] whose start and end points are the limits of integration. If <math>{}^\curvearrowright b(x) \ne b({}^\curvearrowright x)</math>, then multiply the final summand by <math>({}^\curvearrowright a(x) - a(x))/(a({}^\curvearrowright x) - a(x))</math>, and if <math>{}^\curvearrowright b(x) \ne b({}^\curvearrowright x)</math>, then the penultimate summand must be multiplied by <math>({}^\curvearrowright b(x) - b(x))/(b({}^\curvearrowright x) - b(x))</math>.
+
Complex integration allows a [[w:Path (topology)|<span class="wikipedia">path</span>]] whose start and end points are the limits of integration. If <math>\overset{\rightharpoonup}{a}(x) \ne a(\overset{\rightharpoonup}{x})</math>, then multiply the final summand by <math>(\overset{\rightharpoonup}{a}(x) - a(x))/(a(\overset{\rightharpoonup}{x}) - a(x))</math>, and if <math>\overset{\rightharpoonup}{e}(x) \ne e(\overset{\rightharpoonup}{x})</math>, then the penultimate summand must be multiplied by <math>(\overset{\rightharpoonup}{e}(x) - e(x))/(e(\overset{\rightharpoonup}{x}) - e(x))</math>.
  
 
== Siehe auch ==
 
== Siehe auch ==

Latest revision as of 18:19, 1 May 2024

Leibniz integral rule

For [math]\displaystyle{ f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \overset{\rightharpoonup}{x} := {(s, {x}_{2}, ..., {x}_{n})}^{T} }[/math] and [math]\displaystyle{ s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\} }[/math], choosing [math]\displaystyle{ \overset{\rightharpoonup}{a}(x) = a(\overset{\rightharpoonup}{x}) }[/math] aund [math]\displaystyle{ \overset{\rightharpoonup}{e}(x) = e(\overset{\rightharpoonup}{x}) }[/math], it holds that

[math]\displaystyle{ \tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{e(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{e(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} e(x)}{{\downarrow} {{x}_{1}}}f(\overset{\rightharpoonup}{x},e(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\overset{\rightharpoonup}{x},a(x)). }[/math]

Proof:

[math]\displaystyle{ \begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{e(x)}{f(x,t){\downarrow}t} \right) & ={\left( {\uparrow}_{a(\overset{\rightharpoonup}{x})}^{e(\overset{\rightharpoonup}{x})}{f(\overset{\rightharpoonup}{x},t){\downarrow}t}-{\uparrow}_{a(x)}^{e(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ & ={\left( {\uparrow}_{a(x)}^{e(x)}{(f(\overset{\rightharpoonup}{x},t)-f(x,t)){\downarrow}t}+{\uparrow}_{e(x)}^{e(\overset{\rightharpoonup}{x})}{f(\overset{\rightharpoonup}{x},t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\overset{\rightharpoonup}{x})}{f(\overset{\rightharpoonup}{x},t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ & ={\uparrow}_{a(x)}^{e(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} e(x)}{{\downarrow} {{x}_{1}}}f(\overset{\rightharpoonup}{x},e(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\overset{\rightharpoonup}{x},a(x)).\square\end{aligned} }[/math]

Remark

Complex integration allows a path whose start and end points are the limits of integration. If [math]\displaystyle{ \overset{\rightharpoonup}{a}(x) \ne a(\overset{\rightharpoonup}{x}) }[/math], then multiply the final summand by [math]\displaystyle{ (\overset{\rightharpoonup}{a}(x) - a(x))/(a(\overset{\rightharpoonup}{x}) - a(x)) }[/math], and if [math]\displaystyle{ \overset{\rightharpoonup}{e}(x) \ne e(\overset{\rightharpoonup}{x}) }[/math], then the penultimate summand must be multiplied by [math]\displaystyle{ (\overset{\rightharpoonup}{e}(x) - e(x))/(e(\overset{\rightharpoonup}{x}) - e(x)) }[/math].

Siehe auch