Difference between revisions of "Fundamental theorems of calculus"

From MWiki
Jump to: navigation, search
m
m
Line 4: Line 4:
  
  
<table style="width:100%"><tr><td style="vertical-align: top; padding-top: 1em;">'''Proof:'''</td><td style="text-align: center; font-size: 90%;"><math>\begin{aligned}dB(F(z))&amp;=\int\limits_{t\in [d,x] \; \cap \; C}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt}\;\,\;\;-\int\limits_{t\in [d,x[ \; \cap \; C}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt} \\ &amp;=\int\limits_{x}{f(\gamma (t))\frac{\gamma (\curvearrowright Dt)-\gamma (t)}{\curvearrowright Dt-t}dDt}=f(\gamma (x)){{{\gamma }'}_{\curvearrowright }}D(x)dDx=\,f(\gamma (x))(\curvearrowright B\gamma (x)-\gamma (x))=f(z)dBz.\square\end{aligned}</math></td></tr></table>
+
<table style="width:100%"><tr><td style="vertical-align: top; padding-top: 1em;">'''Proof:'''</td><td style="text-align: center; font-size: 86%;"><math>\begin{aligned}dB(F(z))&amp;=\int\limits_{t\in [d,x] \; \cap \; C}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt}\;\,\;\;-\int\limits_{t\in [d,x[ \; \cap \; C}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt} \\ &amp;=\int\limits_{x}{f(\gamma (t))\frac{\gamma (\curvearrowright Dt)-\gamma (t)}{\curvearrowright Dt-t}dDt}=f(\gamma (x)){{{\gamma }'}_{\curvearrowright }}D(x)dDx=\,f(\gamma (x))(\curvearrowright B\gamma (x)-\gamma (x))=f(z)dBz.\square\end{aligned}</math></td></tr></table>
  
 
'''Second fundamental theorem of exact differential and integral calculus for line integrals:''' According to the conditions from above, it holds with <math>\gamma: [a, b[ \; \cap \; C \rightarrow {}^{(\omega)}\mathbb{K}</math> that
 
'''Second fundamental theorem of exact differential and integral calculus for line integrals:''' According to the conditions from above, it holds with <math>\gamma: [a, b[ \; \cap \; C \rightarrow {}^{(\omega)}\mathbb{K}</math> that
Line 12: Line 12:
  
  
<table style="width:100%"><tr><td style="vertical-align: top; padding-top: 0.4em;">'''Proof:'''</td><td style="text-align: center; font-size: 90%;"><math>\begin{aligned}F(\gamma (b))-F(\gamma (a))&amp;=\sum\limits_{t\in [a,b[ \; \cap \; C}{F(\curvearrowright B\,\gamma (t))}-F(\gamma (t))\;\,=\sum\limits_{t\in [a,b[ \; \cap \; C}{{{{{F}'}}_{\curvearrowright }}B(\gamma (t))(\curvearrowright B\,\gamma (t)-\gamma (t))} \\ &amp;=\int\limits_{t\in [a,b[ \; \cap \; C}{{{{{F}'}}_{\curvearrowright }}B(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt}=\int\limits_{\gamma }{{{{{F}'}}_{\curvearrowright }}B(\zeta )dB\zeta }.\square\end{aligned}</math></td></tr></table>
+
<table style="width:100%"><tr><td style="vertical-align: top; padding-top: 0.4em;">'''Proof:'''</td><td style="text-align: center; font-size: 86%;"><math>\begin{aligned}F(\gamma (b))-F(\gamma (a))&amp;=\sum\limits_{t\in [a,b[ \; \cap \; C}{F(\curvearrowright B\,\gamma (t))}-F(\gamma (t))\;\,=\sum\limits_{t\in [a,b[ \; \cap \; C}{{{{{F}'}}_{\curvearrowright }}B(\gamma (t))(\curvearrowright B\,\gamma (t)-\gamma (t))} \\ &amp;=\int\limits_{t\in [a,b[ \; \cap \; C}{{{{{F}'}}_{\curvearrowright }}B(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt}=\int\limits_{\gamma }{{{{{F}'}}_{\curvearrowright }}B(\zeta )dB\zeta }.\square\end{aligned}</math></td></tr></table>
  
 
== See also ==
 
== See also ==

Revision as of 05:46, 28 April 2020

First fundamental theorem of exact differential and integral calculus for line integrals: The function [math]\displaystyle{ F(z)=\int\limits_{\gamma }{f(\zeta )dB\zeta } }[/math] ist mit [math]\displaystyle{ \gamma: [d, x[ \; \cap \; C \rightarrow A \subseteq {}^{(\omega)}\mathbb{K}, C \subseteq \mathbb{R}, f: A \rightarrow {}^{(\omega)}\mathbb{K}, d \in [a, b[ \; \cap \; C }[/math], and choosing [math]\displaystyle{ \curvearrowright B \gamma(x) = \gamma(\curvearrowright D x) }[/math] is exactly [math]\displaystyle{ B }[/math]-differentiable, and for all [math]\displaystyle{ x \in [a, b[ \; \cap \; C }[/math] and [math]\displaystyle{ z = \gamma(x) }[/math]

[math]\displaystyle{ F' \curvearrowright B(z) = f(z). }[/math]


Proof:[math]\displaystyle{ \begin{aligned}dB(F(z))&=\int\limits_{t\in [d,x] \; \cap \; C}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt}\;\,\;\;-\int\limits_{t\in [d,x[ \; \cap \; C}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt} \\ &=\int\limits_{x}{f(\gamma (t))\frac{\gamma (\curvearrowright Dt)-\gamma (t)}{\curvearrowright Dt-t}dDt}=f(\gamma (x)){{{\gamma }'}_{\curvearrowright }}D(x)dDx=\,f(\gamma (x))(\curvearrowright B\gamma (x)-\gamma (x))=f(z)dBz.\square\end{aligned} }[/math]

Second fundamental theorem of exact differential and integral calculus for line integrals: According to the conditions from above, it holds with [math]\displaystyle{ \gamma: [a, b[ \; \cap \; C \rightarrow {}^{(\omega)}\mathbb{K} }[/math] that


[math]\displaystyle{ F(\gamma (b))-F(\gamma (a))=\int\limits_{\gamma }{{{{{F}'}}_{\curvearrowright }}B(\zeta )dB\zeta }. }[/math]


Proof:[math]\displaystyle{ \begin{aligned}F(\gamma (b))-F(\gamma (a))&=\sum\limits_{t\in [a,b[ \; \cap \; C}{F(\curvearrowright B\,\gamma (t))}-F(\gamma (t))\;\,=\sum\limits_{t\in [a,b[ \; \cap \; C}{{{{{F}'}}_{\curvearrowright }}B(\gamma (t))(\curvearrowright B\,\gamma (t)-\gamma (t))} \\ &=\int\limits_{t\in [a,b[ \; \cap \; C}{{{{{F}'}}_{\curvearrowright }}B(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt}=\int\limits_{\gamma }{{{{{F}'}}_{\curvearrowright }}B(\zeta )dB\zeta }.\square\end{aligned} }[/math]

See also