Difference between revisions of "Strassen algorithm"

From MWiki
Jump to: navigation, search
(Theorem for Strassen algorithm)
Line 1: Line 1:
 
=== Theorem for Strassen algorithm ===
 
=== Theorem for Strassen algorithm ===
Computing the [[w:Matrix multiplication|<span class="wikipedia">matrix product</span>]] <math>AA^T</math> decreases the original [[w:Runtime (program lifecycle phase)|<span class="wikipedia">runtime</span>]] <math>T(n) = \mathcal{O}(n^{(_2 7)})</math> of the [[w:Strassen algorithm|<span class="wikipedia">Strassen algorithm</span>]] roughly by <math>\tilde{3}</math> for sufficiently big <math>n := 2^k, k \in \mathbb{N}^*</math> and the [[w:Matrix (mathematics)|<span class="wikipedia">matrix</span>]] <math>A \in \mathbb{C}^{n \times n}</math> due to the [[w:geometric series|<span class="wikipedia">geometric series</span>]] and
+
Computing the [[w:Matrix multiplication|<span class="wikipedia">matrix product</span>]] <math>AA^T</math> decreases the original [[w:Execution_(computing)#Runtime|<span class="wikipedia">runtime</span>]] <math>T(n) = \mathcal{O}(n^{(_2 7)})</math> of the [[w:Strassen algorithm|<span class="wikipedia">Strassen algorithm</span>]] roughly by <math>\tilde{3}</math> for sufficiently big <math>n := 2^k, k \in \mathbb{N}^*</math> and the [[w:Matrix (mathematics)|<span class="wikipedia">matrix</span>]] <math>A \in \mathbb{C}^{n \times n}</math> due to the [[w:geometric series|<span class="wikipedia">geometric series</span>]] and
  
 
<div style="text-align:center;"><math>A :=  
 
<div style="text-align:center;"><math>A :=  

Revision as of 01:47, 28 September 2024

Theorem for Strassen algorithm

Computing the matrix product [math]\displaystyle{ AA^T }[/math] decreases the original runtime [math]\displaystyle{ T(n) = \mathcal{O}(n^{(_2 7)}) }[/math] of the Strassen algorithm roughly by [math]\displaystyle{ \tilde{3} }[/math] for sufficiently big [math]\displaystyle{ n := 2^k, k \in \mathbb{N}^* }[/math] and the matrix [math]\displaystyle{ A \in \mathbb{C}^{n \times n} }[/math] due to the geometric series and

[math]\displaystyle{ A := \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} }[/math] as well as [math]\displaystyle{ AA^T = \begin{pmatrix} A_{11}A_{11}^T+A_{12}A_{12}^T & A_{11}A_{21}^T+A_{12}A_{22}^T \\ A_{21}A_{11}^T+A_{22}A_{12}^T & A_{21}A_{21}^T+A_{22}A_{22}^T \end{pmatrix}.\square }[/math]

See also

List of mathematical symbols