Difference between revisions of "Catalan's theorem"

From MWiki
Jump to: navigation, search
m (Catalan's theorem)
(Catalan's theorem)
Line 1: Line 1:
 
It holds that <math>\{(m, n, x, y) \in {}^{\omega}\mathbb{N}_{\ge 2}^4 : 1 + x^m = y^n\} = \{(3, 2, 2, 3)\}</math>.
 
It holds that <math>\{(m, n, x, y) \in {}^{\omega}\mathbb{N}_{\ge 2}^4 : 1 + x^m = y^n\} = \{(3, 2, 2, 3)\}</math>.
  
'''Indirect proof:''' Let <math>s, t \in {}^{\omega}\mathbb{N}^{*}</math>. [[Beal's theorem]] implies <math>m = 3</math> and <math>n = 2</math>, since vice versa for <math>\acute{x}, y \in {}^{\omega}2\mathbb{N}</math> the contradictions <math>1 + x^2 \equiv 2 \ne 0 \equiv y^n</math>, <math>1 + 4x^m \equiv 5 \ne 0 \equiv y^n</math> and <math>1 + 16x^m \equiv 1 \ne 0 \equiv y^n</math> mod <math>8</math> arise. From <math>\acute{m} \in {}^{\omega}2\mathbb{N}_{\ge 4}</math>, the contradiction <math>1 + {\hat{x}}^m \ne y^2 \equiv (1 + 2^{\acute{m}}s)^2 = 1 + 2^ms + 4^{\acute{m}}s^2</math> mod <math>4^{\acute{m}}</math> follows. Thus <math>1 + {\hat{x}}^3 = (\hat{y}^2 + 1)^2</math>, <math>2x^3 = s^3(s^3 + 1)</math> and <math>s^3 - t^3 = t^3 - 1</math> are left and yield the solution specified.<math>\square</math>
+
'''Indirect proof:''' Let <math>\overset{\scriptsize{\grave{}}}{r}, s, t \in {}^{\omega}\mathbb{N}^{*}</math>. The [[Beal's theorem]] shows min<math>(m, n) = 2</math>. Putting <math>\acute{n} \in {}^{\omega}2\mathbb{N}^{*}</math> implies <math>1 + x^2 \equiv 2 \ne 0 \equiv 2^n{\check{y}}^n</math> mod <math>8</math> and <math>1 + 4{\check{x}}^2 = (1 + 2{\check{y}})^n</math> or <math>4{\check{x}}^2 = 2\check{y}((1 + 2\check{y})^{\acute{n}} + ... + 1)</math> where <math>\check{y} = \hat{z} \in {}^{\omega}\mathbb{N}^{*}</math> and <math>1 + 4{\check{x}}^2 \equiv r \ne -1 \equiv (1+ 4z)^n</math>, since gcd<math>(x, 2 + 4z) \nmid (1 + 4z)</math> leads to <math>2{\check{x}}^2 \equiv r \ne -1</math> mod <math>(2 + 4z)</math><ref name="Ribenboim">[[w:Harald Scheid|<span class="wikipedia">Scheid, Harald</span>]]: ''Zahlentheorie'' : 1st Ed.; 1991; Bibliographisches Institut; Mannheim; ISBN 3411148411, p. 197.</ref> due to <math>{\check{x}}^2 > z</math>. Putting <math>\acute{m} \in {}^{\omega}2\mathbb{N}_{\ge 4}</math> implies <math>1 + x^m \ne y^2</math> due to <math>x^m \ne s^m(2 + s^m)</math> and <math>t^m \ne 2 + s^m</math>. Thus <math>1 + {8\check{x}}^3 = (1 + 4\check{y}^2)^2</math>, <math>2{\check{x}}^3 = s^3(1 + s^3)</math> and <math>s^3 - t^3 = t^3 - 1</math> are left and yield the solution specified.<math>\square</math>
  
 
== See also ==
 
== See also ==
Line 7: Line 7:
 
* [[w:Catalan's_conjecture|<span class="wikipedia">Catalan's conjecture</span>]]
 
* [[w:Catalan's_conjecture|<span class="wikipedia">Catalan's conjecture</span>]]
 
[[Category:Areas of mathematics]]
 
[[Category:Areas of mathematics]]
 +
 +
== Reference ==
 +
<references />
  
 
[[de:Satz von Catalan]]
 
[[de:Satz von Catalan]]

Revision as of 20:27, 14 August 2024

It holds that [math]\displaystyle{ \{(m, n, x, y) \in {}^{\omega}\mathbb{N}_{\ge 2}^4 : 1 + x^m = y^n\} = \{(3, 2, 2, 3)\} }[/math].

Indirect proof: Let [math]\displaystyle{ \overset{\scriptsize{\grave{}}}{r}, s, t \in {}^{\omega}\mathbb{N}^{*} }[/math]. The Beal's theorem shows min[math]\displaystyle{ (m, n) = 2 }[/math]. Putting [math]\displaystyle{ \acute{n} \in {}^{\omega}2\mathbb{N}^{*} }[/math] implies [math]\displaystyle{ 1 + x^2 \equiv 2 \ne 0 \equiv 2^n{\check{y}}^n }[/math] mod [math]\displaystyle{ 8 }[/math] and [math]\displaystyle{ 1 + 4{\check{x}}^2 = (1 + 2{\check{y}})^n }[/math] or [math]\displaystyle{ 4{\check{x}}^2 = 2\check{y}((1 + 2\check{y})^{\acute{n}} + ... + 1) }[/math] where [math]\displaystyle{ \check{y} = \hat{z} \in {}^{\omega}\mathbb{N}^{*} }[/math] and [math]\displaystyle{ 1 + 4{\check{x}}^2 \equiv r \ne -1 \equiv (1+ 4z)^n }[/math], since gcd[math]\displaystyle{ (x, 2 + 4z) \nmid (1 + 4z) }[/math] leads to [math]\displaystyle{ 2{\check{x}}^2 \equiv r \ne -1 }[/math] mod [math]\displaystyle{ (2 + 4z) }[/math][1] due to [math]\displaystyle{ {\check{x}}^2 \gt z }[/math]. Putting [math]\displaystyle{ \acute{m} \in {}^{\omega}2\mathbb{N}_{\ge 4} }[/math] implies [math]\displaystyle{ 1 + x^m \ne y^2 }[/math] due to [math]\displaystyle{ x^m \ne s^m(2 + s^m) }[/math] and [math]\displaystyle{ t^m \ne 2 + s^m }[/math]. Thus [math]\displaystyle{ 1 + {8\check{x}}^3 = (1 + 4\check{y}^2)^2 }[/math], [math]\displaystyle{ 2{\check{x}}^3 = s^3(1 + s^3) }[/math] and [math]\displaystyle{ s^3 - t^3 = t^3 - 1 }[/math] are left and yield the solution specified.[math]\displaystyle{ \square }[/math]

See also

Reference

  1. Scheid, Harald: Zahlentheorie : 1st Ed.; 1991; Bibliographisches Institut; Mannheim; ISBN 3411148411, p. 197.