Main Page

From MWiki
Jump to: navigation, search

Welcome to MWiki

Theorem of the month

Universal multistep theorem

For [math]\displaystyle{ n \in {}^{\nu}\mathbb{N}_{\le p}, k, m, p \in {}^{\nu}\mathbb{N}^{*}, d_{\curvearrowright B} x \in\, ]0, 1[, x \in [a, b] \subseteq {}^{\omega}\mathbb{R}, y : [a, b] \rightarrow {}^{\omega}\mathbb{R}^q, f : [a, b] \times {}^{\omega}\mathbb{R}^{q \times n} \rightarrow {}^{\omega}\mathbb{R}^q, g_k(\curvearrowright B x) := g_{\acute{k}}(x) }[/math] and [math]\displaystyle{ g_0(a) = f((\curvearrowleft B)a, y_0, ... , y_{\acute{n}}) }[/math], the Taylor series of the initial value problem [math]\displaystyle{ y^\prime(x) = f(x, y((\curvearrowright B)^0 x), ... , y((\curvearrowright B)^{\acute{n}} x)) }[/math] of order [math]\displaystyle{ n }[/math] implies

[math]\displaystyle{ y(\curvearrowright B x) = y(x) - d_{\curvearrowright B}x\sum\limits_{k=1}^{p}{i^{2k} g_{p-k}((\curvearrowright B) x)\sum\limits_{m=k}^{p}{\widehat{m!}\binom{\acute{m}}{\acute{k}}}} + \mathcal{O}((d_{\curvearrowright B} x)^{\grave{p}}).\square }[/math]

Goldbach’s theorem

Every even whole number greater than 2 is the sum of two primes.


Induction over all prime gaps until the maximally possible one each time.[math]\displaystyle{ \square }[/math]

Foundation theorem

Only the postulation of the axiom of foundation that every nonempty subset [math]\displaystyle{ X \subseteq Y }[/math] contains an element [math]\displaystyle{ x_0 }[/math] such that [math]\displaystyle{ X }[/math] und [math]\displaystyle{ x_0 }[/math] are disjoint guarantees cycle freedom.


Set [math]\displaystyle{ X := \{x_m : x_0 := \{\emptyset\}, x_{\omega} := \{x_1\} }[/math] and [math]\displaystyle{ x_{\acute{n}} := \{x_n\} }[/math] for [math]\displaystyle{ m \in {}^{\omega}\mathbb{N} }[/math] and [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 2}\} }[/math] .[math]\displaystyle{ \square }[/math]

Recommended reading

Nonstandard Mathematics