Main Page

From MWiki
Jump to: navigation, search

Welcome to MWiki

Theorems of the month

Definition

Let [math]\displaystyle{ f_n^*(z) = f(\eta_nz) }[/math] sisters of the Taylor series [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] centred on 0 on the domain [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] where [math]\displaystyle{ m, n \in {}^{\omega}\mathbb{N}^{*} }[/math] and [math]\displaystyle{ \eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}} }[/math]. Then let [math]\displaystyle{ \delta_n^*f = \tilde{2}(f - f_n^*) }[/math] the halved sister distances of [math]\displaystyle{ f. }[/math] For [math]\displaystyle{ \mu_n^m := m!n!/(m + n)! }[/math], [math]\displaystyle{ \mu }[/math] and [math]\displaystyle{ \eta }[/math] form an calculus, which can be resolved on the level of Taylor series and allows an easy and finite closed representation of integrals and derivatives.[math]\displaystyle{ \triangle }[/math]

Representation theorem for integrals

The Taylor series (see below) [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] centred on 0 on [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] gives for [math]\displaystyle{ \grave{m}, n \in {}^{\omega}\mathbb{N}^* }[/math]

[math]\displaystyle{ {\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square }[/math]

Representation theorem for derivatives

For [math]\displaystyle{ {}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C}, }[/math] the Taylor series

[math]\displaystyle{ f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}}, }[/math]

[math]\displaystyle{ \varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}} }[/math] and [math]\displaystyle{ f }[/math]'s radius of convergence [math]\displaystyle{ r \in {}^{\nu}{\mathbb{R}}_{>0} }[/math] imply

[math]\displaystyle{ {{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}. }[/math]

Proof:

Taylor's theorem[1] and the properties of the roots of unity.[math]\displaystyle{ \square }[/math]

Reference

  1. Remmert, Reinhold: Funktionentheorie 1 : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.

Recommended reading

Nonstandard Mathematics