Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
m (Proof:)
(Representation theorems for integrals and derivatives)
 
Line 2: Line 2:
 
= Welcome to MWiki =
 
= Welcome to MWiki =
 
== Theorems of the month ==
 
== Theorems of the month ==
=== Leibniz' differentiation rule ===
+
=== Definition ===
  
For <math>f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math> and <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math>, choosing <math>\curvearrowright a(x) = a(\curvearrowright x)</math> and <math>\curvearrowright b(x) = b(\curvearrowright x)</math>, it holds that<div style="text-align:center;"><math>\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).</math></div>
+
Let <math>f_n^*(z) = f(\eta_nz)</math> <em>sisters</em> of the Taylor series <math>f(z) \in \mathcal{O}(\mathbb{D})</math> centred on 0 on the domain <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> where <math>m, n \in {}^{\omega}\mathbb{N}^{*}</math> and <math>\eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}}</math>. Then let <math>\delta_n^*f = \tilde{2}(f - f_n^*)</math> the <em>halved sister distances</em> of <math>f.</math> For <math>\mu_n^m := m!n!/(m + n)!</math>, <math>\mu</math> and <math>\eta</math> form an calculus, which can be resolved on the level of Taylor series and allows an easy and finite closed representation of integrals and derivatives.<math>\triangle</math>
  
==== Proof: ====
+
=== Representation theorem for integrals ===
<div style="text-align:center;"><math>\begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &={\left( {\uparrow}_{a(\curvearrowright x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).\square\end{aligned}</math></div>
+
 
 +
The Taylor series (see below) <math>f(z) \in \mathcal{O}(\mathbb{D})</math> centred on 0 on <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> gives for <math>\grave{m}, n \in {}^{\omega}\mathbb{N}^*</math><div style="text-align:center;"><math>{\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square</math></div>
 +
 
 +
=== Representation theorem for derivatives ===
  
=== Beal's theorem ===
+
For <math>{}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C},</math> the Taylor series<div style="text-align:center;"><math>f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}},</math></div><math>\varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}}</math> and <math>f</math>'s radius of convergence <math>r \in {}^{\nu}{\mathbb{R}}_{&gt;0}</math> imply<div style="text-align:center;"><math>{{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}.</math></div>
Equation <math>a^m + b^n = c^k</math> for <math>a, b, c \in \mathbb{N}^{*}</math> and <math>k, m, n \in \mathbb{N}_{\ge 3}</math> implies gcd<math>(a, b, c) > 1.</math>
 
  
 
==== Proof: ====
 
==== Proof: ====
For <math>b^n = (c^{kq}-a^{mr})\left(\tilde{c}^{k\acute{q}} + \tilde{a}^{m\acute{r}}\right) = c^k - a^m + c^{kq} \tilde{a}^{m\acute{r}} - \tilde{c}^{k\acute{q}} a^{mr}</math>, the function <math>f(q,r) := c^{k(\hat{q}-1)} - a^{m(\hat{r}-1)} = 0</math> is continuous in <math>q, r \in {}^{\omega} \mathbb{R}_{>0}</math> and <math>(q_0, r_0) = \left(\check{1}, \check{1}\right)</math> solves the equation. Every further solution in fractions yields after exponentiation gcd<math>(a, c) > 1</math> and thus proves the claim.<math>\square</math>
+
Taylor's theorem<ref name="Remmert">[[w:Reinhold Remmert|<span class="wikipedia">Remmert, Reinhold</span>]]: ''Funktionentheorie 1'' : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.</ref> and the properties of the roots of unity.<math>\square</math>
  
=== Conclusion: ===
+
== Reference ==
The Fermat-Catalan conjecture can be proven analogously and an infinite descent implies because of gcd<math>(a, b, c) > 1</math> that no <math>n \in {}^{\omega}\mathbb{N}_{\ge 3}</math> satisfies <math>a^n + b^n = c^n</math> for arbitrary <math>a, b, c \in {}^{\omega}\mathbb{N}^{*}.\square</math>
+
<references />
  
 
== Recommended reading ==
 
== Recommended reading ==

Latest revision as of 23:05, 31 March 2024

Welcome to MWiki

Theorems of the month

Definition

Let [math]\displaystyle{ f_n^*(z) = f(\eta_nz) }[/math] sisters of the Taylor series [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] centred on 0 on the domain [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] where [math]\displaystyle{ m, n \in {}^{\omega}\mathbb{N}^{*} }[/math] and [math]\displaystyle{ \eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}} }[/math]. Then let [math]\displaystyle{ \delta_n^*f = \tilde{2}(f - f_n^*) }[/math] the halved sister distances of [math]\displaystyle{ f. }[/math] For [math]\displaystyle{ \mu_n^m := m!n!/(m + n)! }[/math], [math]\displaystyle{ \mu }[/math] and [math]\displaystyle{ \eta }[/math] form an calculus, which can be resolved on the level of Taylor series and allows an easy and finite closed representation of integrals and derivatives.[math]\displaystyle{ \triangle }[/math]

Representation theorem for integrals

The Taylor series (see below) [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] centred on 0 on [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] gives for [math]\displaystyle{ \grave{m}, n \in {}^{\omega}\mathbb{N}^* }[/math]

[math]\displaystyle{ {\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square }[/math]

Representation theorem for derivatives

For [math]\displaystyle{ {}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C}, }[/math] the Taylor series

[math]\displaystyle{ f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}}, }[/math]

[math]\displaystyle{ \varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}} }[/math] and [math]\displaystyle{ f }[/math]'s radius of convergence [math]\displaystyle{ r \in {}^{\nu}{\mathbb{R}}_{>0} }[/math] imply

[math]\displaystyle{ {{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}. }[/math]

Proof:

Taylor's theorem[1] and the properties of the roots of unity.[math]\displaystyle{ \square }[/math]

Reference

  1. Remmert, Reinhold: Funktionentheorie 1 : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.

Recommended reading

Nonstandard Mathematics