Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Leibniz' differentiation rule)
(Speedup theorems)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
= Welcome to MWiki =
 
= Welcome to MWiki =
== Theorem of the month ==
+
== Theorems of the month ==
=== Leibniz' differentiation rule ===
+
=== Definition ===
  
For <math>f: {}^{(\omega)}\mathbb{K}^{n+1} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright B x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math>, and <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math>, choosing <math>\curvearrowright D a(x) = a(\curvearrowright B x)</math> and <math>\curvearrowright D b(x) = b(\curvearrowright B x)</math>, it holds that<div style="text-align:center;"><math>\frac{\partial }{\partial {{x}_{1}}}\left( \int\limits_{a(x)}^{b(x)}{f(x,t)dDt} \right)=\int\limits_{a(x)}^{b(x)}{\frac{\partial f(x,t)}{\partial {{x}_{1}}}dDt}+\frac{\partial b(x)}{\partial {{x}_{1}}}f(\curvearrowright Bx,b(x))-\frac{\partial a(x)}{\partial {{x}_{1}}}f(\curvearrowright Bx,a(x)).</math></div>
+
Let <math>f_n^*(z) = f(\eta_nz)</math> <em>sisters</em> of the Taylor series <math>f(z) \in \mathcal{O}(D)</math> centred on 0 on the domain <math>D \subseteq {}^{\omega}\mathbb{C}</math> where <math>m, n \in {}^{\omega}\mathbb{N}^{*}</math> and <math>\eta_n^m := i^{2^{\lceil m/n \rceil}}</math>. Then let <math>\delta_n^*f = (f - f_n^*)/2</math> the <em>halved sister distances</em> of <math>f.</math> For <math>\mu_n^m := m!n!/(m + n)!</math>, <math>\mu</math> and <math>\eta</math> form an calculus, which can be resolved on the level of Taylor series and allows an easy and finite closed representation of integrals and derivatives.<math>\triangle</math>
 +
 
 +
=== Speedup theorem for integrals ===
 +
 
 +
The Taylor series (see below) <math>f(z) \in \mathcal{O}(D)</math> centred on 0 on <math>D \subseteq {}^{\omega}\mathbb{C}</math> gives for <math>\grave{m}, n \in {}^{\omega}\mathbb{N}^*</math><div style="text-align:center;"><math>\int\limits_0^z...\int\limits_0^{\zeta_2}{f(\zeta_1)\text{d}\zeta_1\;...\;\text{d}\zeta_n} = \widehat{n!} f(z\mu_n) z^n.\square</math></div>
 +
 
 +
=== Speedup theorem for derivatives ===
 +
 
 +
For <math>\mathbb{B}_{\hat{\nu}}(0) \subset  D \subseteq {}^{\omega}\mathbb{C},</math> the Taylor series<div style="text-align:center;"><math>f(z):=f(0) + \sum\limits_{m=1}^{\omega }{\widehat{m!}\,{{f}^{(m)}}(0){z^m}},</math></div><math>b_{\varepsilon n} := \hat{\varepsilon}\,\acute{n}! = 2^j, j, n \in {}^{\omega}\mathbb{N}^{*}, \varepsilon \in ]0, r^n[, {{d}_{\varepsilon k n}}:={{\varepsilon}^{{\hat{n}}}}{e}^{\hat{n}k\tau i}</math> and <math>f</math>'s radius of convergence <math>r \in {}^{\nu}{\mathbb{R}}_{&gt;0}</math> imply<div style="text-align:center;"><math>{{f}^{(n)}}(0)=b_{\varepsilon n}\sum\limits_{k=1}^{n}{\delta_n^* f({{d}_{\varepsilon k n}})}.</math></div>
  
 
==== Proof: ====
 
==== Proof: ====
<div style="text-align:center;"><math>\begin{aligned}\frac{\partial }{\partial {{x}_{1}}}\left( \int\limits_{a(x)}^{b(x)}{f(x,t)dDt} \right) &amp;={\left( \int\limits_{a(\curvearrowright Bx)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t)dDt}-\int\limits_{a(x)}^{b(x)}{f(x,t)dDt} \right)}/{\partial {{x}_{1}}}\;={\left( \int\limits_{a(x)}^{b(x)}{(f(\curvearrowright Bx,t)-f(x,t))dDt}+\int\limits_{b(x)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t)dDt}-\int\limits_{a(x)}^{a(\curvearrowright Bx)}{f(\curvearrowright Bx,t)dDt} \right)}/{\partial {{x}_{1}}}\; \\ &amp;=\int\limits_{a(x)}^{b(x)}{\frac{\partial f(x,t)}{\partial {{x}_{1}}}dDt}+\frac{\partial b(x)}{\partial {{x}_{1}}}f(\curvearrowright Bx,b(x))-\frac{\partial a(x)}{\partial {{x}_{1}}}f(\curvearrowright Bx,a(x)).\square\end{aligned}</math></div>
+
Taylor's theorem<ref name="Remmert">[[w:Reinhold Remmert|<span class="wikipedia">Remmert, Reinhold</span>]]: ''Funktionentheorie 1'' : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.</ref> and the properties of the roots of unity.<math>\square</math>
 +
 
 +
== Reference ==
 +
<references />
  
 
== Recommended reading ==
 
== Recommended reading ==

Revision as of 19:06, 31 March 2022

Welcome to MWiki

Theorems of the month

Definition

Let [math]\displaystyle{ f_n^*(z) = f(\eta_nz) }[/math] sisters of the Taylor series [math]\displaystyle{ f(z) \in \mathcal{O}(D) }[/math] centred on 0 on the domain [math]\displaystyle{ D \subseteq {}^{\omega}\mathbb{C} }[/math] where [math]\displaystyle{ m, n \in {}^{\omega}\mathbb{N}^{*} }[/math] and [math]\displaystyle{ \eta_n^m := i^{2^{\lceil m/n \rceil}} }[/math]. Then let [math]\displaystyle{ \delta_n^*f = (f - f_n^*)/2 }[/math] the halved sister distances of [math]\displaystyle{ f. }[/math] For [math]\displaystyle{ \mu_n^m := m!n!/(m + n)! }[/math], [math]\displaystyle{ \mu }[/math] and [math]\displaystyle{ \eta }[/math] form an calculus, which can be resolved on the level of Taylor series and allows an easy and finite closed representation of integrals and derivatives.[math]\displaystyle{ \triangle }[/math]

Speedup theorem for integrals

The Taylor series (see below) [math]\displaystyle{ f(z) \in \mathcal{O}(D) }[/math] centred on 0 on [math]\displaystyle{ D \subseteq {}^{\omega}\mathbb{C} }[/math] gives for [math]\displaystyle{ \grave{m}, n \in {}^{\omega}\mathbb{N}^* }[/math]

[math]\displaystyle{ \int\limits_0^z...\int\limits_0^{\zeta_2}{f(\zeta_1)\text{d}\zeta_1\;...\;\text{d}\zeta_n} = \widehat{n!} f(z\mu_n) z^n.\square }[/math]

Speedup theorem for derivatives

For [math]\displaystyle{ \mathbb{B}_{\hat{\nu}}(0) \subset D \subseteq {}^{\omega}\mathbb{C}, }[/math] the Taylor series

[math]\displaystyle{ f(z):=f(0) + \sum\limits_{m=1}^{\omega }{\widehat{m!}\,{{f}^{(m)}}(0){z^m}}, }[/math]

[math]\displaystyle{ b_{\varepsilon n} := \hat{\varepsilon}\,\acute{n}! = 2^j, j, n \in {}^{\omega}\mathbb{N}^{*}, \varepsilon \in ]0, r^n[, {{d}_{\varepsilon k n}}:={{\varepsilon}^{{\hat{n}}}}{e}^{\hat{n}k\tau i} }[/math] and [math]\displaystyle{ f }[/math]'s radius of convergence [math]\displaystyle{ r \in {}^{\nu}{\mathbb{R}}_{>0} }[/math] imply

[math]\displaystyle{ {{f}^{(n)}}(0)=b_{\varepsilon n}\sum\limits_{k=1}^{n}{\delta_n^* f({{d}_{\varepsilon k n}})}. }[/math]

Proof:

Taylor's theorem[1] and the properties of the roots of unity.[math]\displaystyle{ \square }[/math]

Reference

  1. Remmert, Reinhold: Funktionentheorie 1 : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.

Recommended reading

Nonstandard Mathematics