Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Greatest-prime Criterion and Transcendence of Euler's Constant)
(Representation theorems for integrals and derivatives)
 
(24 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
= Welcome to MWiki =
 
= Welcome to MWiki =
 
== Theorems of the month ==
 
== Theorems of the month ==
=== Greatest-prime Criterion ===
+
=== Definition ===
  
If a real number may be represented as an irreducible fraction <math>\widetilde{ap}b \pm \tilde{s}t</math>, where <math>a, b, s</math>, and <math>t</math> are natural numbers, <math>abst \ne 0</math>, <math>a + s &gt; 2</math>, and the (second-)greatest prime number <math>p \in {}^{\omega }\mathbb{P}, p \nmid b</math> and <math>p \nmid s</math>, then <math>r</math> is <math>\omega</math>-transcendental.
+
Let <math>f_n^*(z) = f(\eta_nz)</math> <em>sisters</em> of the Taylor series <math>f(z) \in \mathcal{O}(\mathbb{D})</math> centred on 0 on the domain <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> where <math>m, n \in {}^{\omega}\mathbb{N}^{*}</math> and <math>\eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}}</math>. Then let <math>\delta_n^*f = \tilde{2}(f - f_n^*)</math> the <em>halved sister distances</em> of <math>f.</math> For <math>\mu_n^m := m!n!/(m + n)!</math>, <math>\mu</math> and <math>\eta</math> form an calculus, which can be resolved on the level of Taylor series and allows an easy and finite closed representation of integrals and derivatives.<math>\triangle</math>
  
==== Proof: ====
+
=== Representation theorem for integrals ===
The denominator <math>\widetilde{ap s} (bs \pm apt)</math> is <math>\ge \hat{p} \ge \hat{\omega} - \mathcal{O}({_e}\omega{\omega}^{\tilde{2}}) &gt; \omega</math> by the prime number theorem.<math>\square</math>
 
  
=== Transcendence of Euler's Constant ===
+
The Taylor series (see below) <math>f(z) \in \mathcal{O}(\mathbb{D})</math> centred on 0 on <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> gives for <math>\grave{m}, n \in {}^{\omega}\mathbb{N}^*</math><div style="text-align:center;"><math>{\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square</math></div>
  
For <math>x \in {}^{\omega }{\mathbb{R}}</math>, let be <math>s(x) := {+}_{n=1}^{\omega}{\tilde{n}{{x}^{n}}}</math> and <math>\gamma := s(1) - {_e}\omega = {\uparrow}_{1}^{\omega}{\left( \widetilde{\left\lfloor x \right\rfloor} - \tilde{x} \right)\downarrow x}</math> Euler's constant, where rearranging shows <math>\gamma \in \; ]0, 1[</math>.
+
=== Representation theorem for derivatives ===
  
If <math>{_e}\omega = s(\tilde{2})\;{_2}\omega</math> is accepted, <math>\gamma \in {}^{\omega }\mathbb{T}_{\mathbb{R}}</math> is true with a precision of <math>\mathcal{O}({2}^{-\omega}\tilde{\omega}\;{_e}\omega)</math>.
+
For <math>{}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C},</math> the Taylor series<div style="text-align:center;"><math>f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}},</math></div><math>\varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}}</math> and <math>f</math>'s radius of convergence <math>r \in {}^{\nu}{\mathbb{R}}_{&gt;0}</math> imply<div style="text-align:center;"><math>{{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}.</math></div>
  
 
==== Proof: ====
 
==== Proof: ====
The (exact) integration of the geometric series yields <math>-{_e}(-\acute{x}) = s(x) + \mathcal{O}(\tilde{\omega}{x}^{\grave{\omega}}/\acute{x}) + t(x)dx</math> for <math>x \in [-1, 1 - \tilde{\nu}]</math> and <math>t(x) \in {}^{\omega }{\mathbb{R}}</math> such that <math>|t(x)| &lt; {\omega}</math>.
+
Taylor's theorem<ref name="Remmert">[[w:Reinhold Remmert|<span class="wikipedia">Remmert, Reinhold</span>]]: ''Funktionentheorie 1'' : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.</ref> and the properties of the roots of unity.<math>\square</math>
  
After applying Fermat's little theorem to the numerator of <math>\tilde{p}(1 - 2^{-p}\,{_2}\omega)</math> for <math>p = \max\, {}^{\omega}\mathbb{P}</math>, the greatest-prime criterion yields the claim.<math>\square</math>
+
== Reference ==
 +
<references />
  
 
== Recommended reading ==
 
== Recommended reading ==

Latest revision as of 23:05, 31 March 2024

Welcome to MWiki

Theorems of the month

Definition

Let [math]\displaystyle{ f_n^*(z) = f(\eta_nz) }[/math] sisters of the Taylor series [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] centred on 0 on the domain [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] where [math]\displaystyle{ m, n \in {}^{\omega}\mathbb{N}^{*} }[/math] and [math]\displaystyle{ \eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}} }[/math]. Then let [math]\displaystyle{ \delta_n^*f = \tilde{2}(f - f_n^*) }[/math] the halved sister distances of [math]\displaystyle{ f. }[/math] For [math]\displaystyle{ \mu_n^m := m!n!/(m + n)! }[/math], [math]\displaystyle{ \mu }[/math] and [math]\displaystyle{ \eta }[/math] form an calculus, which can be resolved on the level of Taylor series and allows an easy and finite closed representation of integrals and derivatives.[math]\displaystyle{ \triangle }[/math]

Representation theorem for integrals

The Taylor series (see below) [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] centred on 0 on [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] gives for [math]\displaystyle{ \grave{m}, n \in {}^{\omega}\mathbb{N}^* }[/math]

[math]\displaystyle{ {\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square }[/math]

Representation theorem for derivatives

For [math]\displaystyle{ {}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C}, }[/math] the Taylor series

[math]\displaystyle{ f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}}, }[/math]

[math]\displaystyle{ \varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}} }[/math] and [math]\displaystyle{ f }[/math]'s radius of convergence [math]\displaystyle{ r \in {}^{\nu}{\mathbb{R}}_{>0} }[/math] imply

[math]\displaystyle{ {{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}. }[/math]

Proof:

Taylor's theorem[1] and the properties of the roots of unity.[math]\displaystyle{ \square }[/math]

Reference

  1. Remmert, Reinhold: Funktionentheorie 1 : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.

Recommended reading

Nonstandard Mathematics