Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Greatest-prime Criterion and Transcendence of Euler's Constant)
(Green's and Singmaster's theorem)
 
(37 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
= Welcome to MWiki =
 
= Welcome to MWiki =
 
== Theorems of the month ==
 
== Theorems of the month ==
=== Greatest-prime Criterion ===
+
=== Green's theorem ===
  
If a real number may be represented as an irreducible fraction <math>\widehat{ap}b \pm \hat{s}t</math>, where <math>a, b, s</math>, and <math>t</math> are natural numbers, <math>abst \ne 0</math>, <math>a + s &gt; 2</math>, and the (second-)greatest prime number <math>p \in {}^{\omega }\mathbb{P}, p \nmid b</math> and <math>p \nmid s</math>, then <math>r</math> is <math>\omega</math>-transcendental.
+
For some <math>h</math>-domain <math>\mathbb{D} \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimal <math>h = |{\downarrow}x|= |{\downarrow}y| = |\overset{\rightharpoonup}{\gamma}(s) - \gamma(s)| = \mathcal{O}({\tilde{\omega}}^{m})</math>, sufficiently large <math>m \in \mathbb{N}^{*}, (x, y) \in \mathbb{D}, \mathbb{D}^{-} := \{(x, y) \in \mathbb{D} : (x + h, y + h) \in \mathbb{D}\}</math>, and a simply closed path <math>\gamma: [a, b[\rightarrow {\downarrow} \mathbb{D}</math> followed anticlockwise, choosing <math>\overset{\rightharpoonup}{\gamma}(s) = \gamma(\overset{\rightharpoonup}{s})</math> for <math>s \in [a, b[, A \subseteq {[a, b]}^{2}</math>, the following equation holds for sufficiently <math>\alpha</math>-continuous functions <math>u, v: \mathbb{D} \rightarrow \mathbb{R}</math> with not necessarily continuous <math>{\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x</math> and <math>{\downarrow} v/{\downarrow} y</math><div style="text-align:center;"><math>{\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}.</math></div>
  
 
==== Proof: ====
 
==== Proof: ====
The denominator <math>\widehat{ap s} (bs \pm apt)</math> is <math>\ge 2p \ge 2\omega - \mathcal{O}({_e}\omega\sqrt{\omega}) &gt; \omega</math> by the prime number theorem.<math>\square</math>
+
Only <math>\mathbb{D} := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : {\downarrow} \mathbb{D} \rightarrow {}^{(\omega)}\mathbb{R}</math> is proved, since the proof is analogous for each case rotated by <math>\check{\pi}</math>. Every <math>h</math>-domian is union of such sets. Simply showing <div style="text-align:center;"><math>{\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.</math></div> is sufficient because the other relation is given analogously. Neglecting the regions of <math>\gamma</math> with <math>{\downarrow}x = 0</math> and <math>s := h(u(r, g(r)) - u(t, g(t)))</math> shows <div style="text-align:center;"><math>-{\uparrow}_{\gamma }{u\,{\downarrow}x}-s={\uparrow}_{t}^{r}{u(x,g(x)){\downarrow}x}-{\uparrow}_{t}^{r}{u(x,f(x)){\downarrow}x}={\uparrow}_{t}^{r}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square</math></div>
  
=== Transcendence of Euler's Constant ===
+
=== Singmaster's theorem ===
  
For <math>x \in {}^{\omega }{\mathbb{R}}</math>, let be <math>s(x) := \sum\limits_{n=1}^{\omega}{\hat{n}{{x}^{n}}}</math> and <math>\gamma := s(1) - {_e}\omega = \int\limits_{1}^{\omega}{\left( \widehat{\left\lfloor x \right\rfloor} - \hat{x} \right)dx}</math> Euler's constant, where rearranging shows <math>\gamma \in \; ]0, 1[</math>.
+
There are maximally 8 distinct binomial coefficients of the same value > 1.
 
 
If <math>{_e}\omega = s(\hat{2})\;{_2}\omega</math> is accepted, <math>\gamma \in {}^{\omega }\mathbb{T}_{\mathbb{R}}</math> is true with a precision of <math>\mathcal{O}({2}^{-\omega}\hat{\omega}\;{_e}\omega)</math>.
 
  
 
==== Proof: ====
 
==== Proof: ====
The (exact) integration of the geometric series yields <math>-{_e}(-\acute{x}) = s(x) + \mathcal{O}(\hat{\omega}{x}^{\grave{\omega}}/\acute{x}) + t(x)dx</math> for <math>x \in [-1, 1 - \hat{\nu}]</math> and <math>t(x) \in {}^{\omega }{\mathbb{R}}</math> such that <math>|t(x)| &lt; {\omega}</math>.
+
The existence is clear due to <math>\tbinom{3003}{1} = \tbinom{78}{2} = \tbinom{15}{5} = \tbinom{14}{6}</math> and the structure of Pascal's triangle. With <math>p \in {}^{\omega }{\mathbb{P}}, a,b ,c, d \in {}^{\omega }{\mathbb{N^*}}, \hat{a} \le r := p - b, \hat{a} < \hat{c} \le n := p - d, b < d</math> and <math>s \notin \mathbb{P}</math> for every <math>s \in [\max(r - \acute{a},\grave{n}), r]</math>, Stirling's formula <math>{n!}^2\sim\pi(\hat{n}+\tilde{3}){(\tilde{\epsilon}n)}^{\hat{n}}</math> and the prime number theorem imply <math>\omega\tbinom{r}{a} \le {}_\epsilon\omega\tbinom{n}{c}</math> for <math>p \rightarrow \omega.\square</math>
 
 
After applying Fermat's little theorem to the numerator of <math>\hat{p}(1 - 2^{-p}\,{_2}\omega)</math> for <math>p = \max\, {}^{\omega}\mathbb{P}</math>, the greatest-prime criterion yields the claim.<math>\square</math>
 
  
 
== Recommended reading ==
 
== Recommended reading ==

Latest revision as of 02:03, 1 May 2024

Welcome to MWiki

Theorems of the month

Green's theorem

For some [math]\displaystyle{ h }[/math]-domain [math]\displaystyle{ \mathbb{D} \subseteq {}^{(\omega)}\mathbb{R}^{2} }[/math], infinitesimal [math]\displaystyle{ h = |{\downarrow}x|= |{\downarrow}y| = |\overset{\rightharpoonup}{\gamma}(s) - \gamma(s)| = \mathcal{O}({\tilde{\omega}}^{m}) }[/math], sufficiently large [math]\displaystyle{ m \in \mathbb{N}^{*}, (x, y) \in \mathbb{D}, \mathbb{D}^{-} := \{(x, y) \in \mathbb{D} : (x + h, y + h) \in \mathbb{D}\} }[/math], and a simply closed path [math]\displaystyle{ \gamma: [a, b[\rightarrow {\downarrow} \mathbb{D} }[/math] followed anticlockwise, choosing [math]\displaystyle{ \overset{\rightharpoonup}{\gamma}(s) = \gamma(\overset{\rightharpoonup}{s}) }[/math] for [math]\displaystyle{ s \in [a, b[, A \subseteq {[a, b]}^{2} }[/math], the following equation holds for sufficiently [math]\displaystyle{ \alpha }[/math]-continuous functions [math]\displaystyle{ u, v: \mathbb{D} \rightarrow \mathbb{R} }[/math] with not necessarily continuous [math]\displaystyle{ {\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x }[/math] and [math]\displaystyle{ {\downarrow} v/{\downarrow} y }[/math]

[math]\displaystyle{ {\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}. }[/math]

Proof:

Only [math]\displaystyle{ \mathbb{D} := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : {\downarrow} \mathbb{D} \rightarrow {}^{(\omega)}\mathbb{R} }[/math] is proved, since the proof is analogous for each case rotated by [math]\displaystyle{ \check{\pi} }[/math]. Every [math]\displaystyle{ h }[/math]-domian is union of such sets. Simply showing

[math]\displaystyle{ {\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}. }[/math]

is sufficient because the other relation is given analogously. Neglecting the regions of [math]\displaystyle{ \gamma }[/math] with [math]\displaystyle{ {\downarrow}x = 0 }[/math] and [math]\displaystyle{ s := h(u(r, g(r)) - u(t, g(t))) }[/math] shows

[math]\displaystyle{ -{\uparrow}_{\gamma }{u\,{\downarrow}x}-s={\uparrow}_{t}^{r}{u(x,g(x)){\downarrow}x}-{\uparrow}_{t}^{r}{u(x,f(x)){\downarrow}x}={\uparrow}_{t}^{r}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square }[/math]

Singmaster's theorem

There are maximally 8 distinct binomial coefficients of the same value > 1.

Proof:

The existence is clear due to [math]\displaystyle{ \tbinom{3003}{1} = \tbinom{78}{2} = \tbinom{15}{5} = \tbinom{14}{6} }[/math] and the structure of Pascal's triangle. With [math]\displaystyle{ p \in {}^{\omega }{\mathbb{P}}, a,b ,c, d \in {}^{\omega }{\mathbb{N^*}}, \hat{a} \le r := p - b, \hat{a} \lt \hat{c} \le n := p - d, b \lt d }[/math] and [math]\displaystyle{ s \notin \mathbb{P} }[/math] for every [math]\displaystyle{ s \in [\max(r - \acute{a},\grave{n}), r] }[/math], Stirling's formula [math]\displaystyle{ {n!}^2\sim\pi(\hat{n}+\tilde{3}){(\tilde{\epsilon}n)}^{\hat{n}} }[/math] and the prime number theorem imply [math]\displaystyle{ \omega\tbinom{r}{a} \le {}_\epsilon\omega\tbinom{n}{c} }[/math] for [math]\displaystyle{ p \rightarrow \omega.\square }[/math]

Recommended reading

Nonstandard Mathematics