Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Counter-directional theorem)
(Green's and Singmaster's theorem)
 
(63 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
= Welcome to MWiki =
 
= Welcome to MWiki =
== Theorem of the month ==
+
== Theorems of the month ==
=== Counter-directional theorem ===
+
=== Green's theorem ===
  
If the path <math>\gamma: [a, b[ \, \cap \, C \rightarrow V</math> with <math>C \subseteq \mathbb{R}</math> passes the edges of every <math>n</math>-cube of side length d0 in the <math>n</math>-volume <math>V \subseteq {}^{(\omega)}\mathbb{R}^{n}</math> with <math>n \in \mathbb{N}_{\ge 2}</math> exactly once, where the opposite edges in all two-dimensional faces of every <math>n</math>-cube are traversed in reverse direction, but uniformly, then, for <math>D \subseteq \mathbb{R}^{2}, B \subseteq {V}^{2}, f = ({f}_{1}, ..., {f}_{n}): V \rightarrow {}^{(\omega)}\mathbb{R}^{n}, \gamma(t) = x, \gamma(\curvearrowright D t) = \curvearrowright B x</math> and <math>{V}_{\curvearrowright } := \{\curvearrowright B x \in V: x \in V, \curvearrowright B x \ne \curvearrowleft B x\}</math>, it holds that
+
For some <math>h</math>-domain <math>\mathbb{D} \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimal <math>h = |{\downarrow}x|= |{\downarrow}y| = |\overset{\rightharpoonup}{\gamma}(s) - \gamma(s)| = \mathcal{O}({\tilde{\omega}}^{m})</math>, sufficiently large <math>m \in \mathbb{N}^{*}, (x, y) \in \mathbb{D}, \mathbb{D}^{-} := \{(x, y) \in \mathbb{D} : (x + h, y + h) \in \mathbb{D}\}</math>, and a simply closed path <math>\gamma: [a, b[\rightarrow {\downarrow} \mathbb{D}</math> followed anticlockwise, choosing <math>\overset{\rightharpoonup}{\gamma}(s) = \gamma(\overset{\rightharpoonup}{s})</math> for <math>s \in [a, b[, A \subseteq {[a, b]}^{2}</math>, the following equation holds for sufficiently <math>\alpha</math>-continuous functions <math>u, v: \mathbb{D} \rightarrow \mathbb{R}</math> with not necessarily continuous <math>{\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x</math> and <math>{\downarrow} v/{\downarrow} y</math><div style="text-align:center;"><math>{\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}.</math></div>
  
 +
==== Proof: ====
 +
Only <math>\mathbb{D} := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : {\downarrow} \mathbb{D} \rightarrow {}^{(\omega)}\mathbb{R}</math> is proved, since the proof is analogous for each case rotated by <math>\check{\pi}</math>. Every <math>h</math>-domian is union of such sets. Simply showing <div style="text-align:center;"><math>{\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.</math></div> is sufficient because the other relation is given analogously. Neglecting the regions of <math>\gamma</math> with <math>{\downarrow}x = 0</math> and <math>s := h(u(r, g(r)) - u(t, g(t)))</math> shows <div style="text-align:center;"><math>-{\uparrow}_{\gamma }{u\,{\downarrow}x}-s={\uparrow}_{t}^{r}{u(x,g(x)){\downarrow}x}-{\uparrow}_{t}^{r}{u(x,f(x)){\downarrow}x}={\uparrow}_{t}^{r}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square</math></div>
 +
 +
=== Singmaster's theorem ===
  
<div style="text-align:center;"><math>\int\limits_{t \in [a,b[ \, \cap \, C}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}(t)dDt}=\int\limits_{\begin{smallmatrix} (x,\curvearrowright B\,x) \\ \in V\times {{V}_{\curvearrowright}} \end{smallmatrix}}{f(x)dBx}=\int\limits_{\begin{smallmatrix} t \in [a,b[ \, \cap \, C, \\ \gamma | {\partial{}^{\acute{n}}} V \end{smallmatrix}}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}(t)dDt}.</math></div>
+
There are maximally 8 distinct binomial coefficients of the same value > 1.
  
 
==== Proof: ====
 
==== Proof: ====
If two arbitrary squares are considered with common edge of length d0 included in one plane, then only the edges of <math>V\times{V}_{\curvearrowright}</math> are not passed in both directions for the same function value. They all, and thus the path to be passed, are exactly contained in <math>{\partial}^{\acute{n}}V.\square</math>
+
The existence is clear due to <math>\tbinom{3003}{1} = \tbinom{78}{2} = \tbinom{15}{5} = \tbinom{14}{6}</math> and the structure of Pascal's triangle. With <math>p \in {}^{\omega }{\mathbb{P}}, a,b ,c, d \in {}^{\omega }{\mathbb{N^*}}, \hat{a} \le r := p - b, \hat{a} < \hat{c} \le n := p - d, b < d</math> and <math>s \notin \mathbb{P}</math> for every <math>s \in [\max(r - \acute{a},\grave{n}), r]</math>, Stirling's formula <math>{n!}^2\sim\pi(\hat{n}+\tilde{3}){(\tilde{\epsilon}n)}^{\hat{n}}</math> and the prime number theorem imply <math>\omega\tbinom{r}{a} \le {}_\epsilon\omega\tbinom{n}{c}</math> for <math>p \rightarrow \omega.\square</math>
  
 
== Recommended reading ==
 
== Recommended reading ==

Latest revision as of 02:03, 1 May 2024

Welcome to MWiki

Theorems of the month

Green's theorem

For some [math]\displaystyle{ h }[/math]-domain [math]\displaystyle{ \mathbb{D} \subseteq {}^{(\omega)}\mathbb{R}^{2} }[/math], infinitesimal [math]\displaystyle{ h = |{\downarrow}x|= |{\downarrow}y| = |\overset{\rightharpoonup}{\gamma}(s) - \gamma(s)| = \mathcal{O}({\tilde{\omega}}^{m}) }[/math], sufficiently large [math]\displaystyle{ m \in \mathbb{N}^{*}, (x, y) \in \mathbb{D}, \mathbb{D}^{-} := \{(x, y) \in \mathbb{D} : (x + h, y + h) \in \mathbb{D}\} }[/math], and a simply closed path [math]\displaystyle{ \gamma: [a, b[\rightarrow {\downarrow} \mathbb{D} }[/math] followed anticlockwise, choosing [math]\displaystyle{ \overset{\rightharpoonup}{\gamma}(s) = \gamma(\overset{\rightharpoonup}{s}) }[/math] for [math]\displaystyle{ s \in [a, b[, A \subseteq {[a, b]}^{2} }[/math], the following equation holds for sufficiently [math]\displaystyle{ \alpha }[/math]-continuous functions [math]\displaystyle{ u, v: \mathbb{D} \rightarrow \mathbb{R} }[/math] with not necessarily continuous [math]\displaystyle{ {\downarrow} u/{\downarrow} x, {\downarrow} u/{\downarrow} y, {\downarrow} v/{\downarrow} x }[/math] and [math]\displaystyle{ {\downarrow} v/{\downarrow} y }[/math]

[math]\displaystyle{ {\uparrow}_{\gamma }{(u\,{\downarrow}x+v\,{\downarrow}y)}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\left( \tfrac{{\downarrow} v}{{\downarrow} x}-\tfrac{{\downarrow} u}{{\downarrow} y} \right){\downarrow}(x,y)}. }[/math]

Proof:

Only [math]\displaystyle{ \mathbb{D} := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : {\downarrow} \mathbb{D} \rightarrow {}^{(\omega)}\mathbb{R} }[/math] is proved, since the proof is analogous for each case rotated by [math]\displaystyle{ \check{\pi} }[/math]. Every [math]\displaystyle{ h }[/math]-domian is union of such sets. Simply showing

[math]\displaystyle{ {\uparrow}_{\gamma }{u\,{\downarrow}x}=-{\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}. }[/math]

is sufficient because the other relation is given analogously. Neglecting the regions of [math]\displaystyle{ \gamma }[/math] with [math]\displaystyle{ {\downarrow}x = 0 }[/math] and [math]\displaystyle{ s := h(u(r, g(r)) - u(t, g(t))) }[/math] shows

[math]\displaystyle{ -{\uparrow}_{\gamma }{u\,{\downarrow}x}-s={\uparrow}_{t}^{r}{u(x,g(x)){\downarrow}x}-{\uparrow}_{t}^{r}{u(x,f(x)){\downarrow}x}={\uparrow}_{t}^{r}{{\uparrow}_{f(x)}^{g(x)}{\tfrac{{\downarrow} u}{{\downarrow} y}}{\downarrow}y{\downarrow}x}={\uparrow}_{(x,y)\in {\mathbb{D}^{-}}}{\tfrac{{\downarrow} u}{{\downarrow} y}{\downarrow}(x,y)}.\square }[/math]

Singmaster's theorem

There are maximally 8 distinct binomial coefficients of the same value > 1.

Proof:

The existence is clear due to [math]\displaystyle{ \tbinom{3003}{1} = \tbinom{78}{2} = \tbinom{15}{5} = \tbinom{14}{6} }[/math] and the structure of Pascal's triangle. With [math]\displaystyle{ p \in {}^{\omega }{\mathbb{P}}, a,b ,c, d \in {}^{\omega }{\mathbb{N^*}}, \hat{a} \le r := p - b, \hat{a} \lt \hat{c} \le n := p - d, b \lt d }[/math] and [math]\displaystyle{ s \notin \mathbb{P} }[/math] for every [math]\displaystyle{ s \in [\max(r - \acute{a},\grave{n}), r] }[/math], Stirling's formula [math]\displaystyle{ {n!}^2\sim\pi(\hat{n}+\tilde{3}){(\tilde{\epsilon}n)}^{\hat{n}} }[/math] and the prime number theorem imply [math]\displaystyle{ \omega\tbinom{r}{a} \le {}_\epsilon\omega\tbinom{n}{c} }[/math] for [math]\displaystyle{ p \rightarrow \omega.\square }[/math]

Recommended reading

Nonstandard Mathematics