Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Theorems of the month)
(Recommended readings)
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
__NOTOC__
 
= Welcome to MWiki =
 
= Welcome to MWiki =
== Theorem of the month ==
+
== Theorems of the month ==
Theorem: The intex method solves every solvable LP in <math>\mathcal{O}({\vartheta}^{3})</math>.
+
=== Cauchy's integral theorem===
 +
Given the neighbourhood relations <math>B \subseteq {A}^{2}</math> and <math>D \subseteq [a, b]</math> for some simply connected <math>h</math>-set <math>A \subseteq {}^{\omega}\mathbb{C}</math>, infinitesimal <math>h</math>, a holomorphic function <math>f: A \rightarrow {}^{\omega}\mathbb{C}</math> and a closed path <math>\gamma: [a, b[\rightarrow \partial A</math>, choosing <math>\curvearrowright B \gamma(t) = \gamma(\curvearrowright D t)</math> for <math>t \in [a, b[</math>, we have that
 +
<div style="text-align:center;"><math>\int\limits_{\gamma }{f(z)dBz}=0.</math></div>
 +
'''Proof:''' By the Cauchy-Riemann partial differential equations and Green's theorem, with <math>x := \text{Re} \, z, y := \text{Im} \, z, u := \text{Re} \, f, v := \text{Im} \, f</math> and <math>{A}^{-} := \{z \in A : z + h + ih \in A\}</math>, we have that
 +
<div style="text-align:center;"><math>\int\limits_{\gamma }{f(z)dBz}=\int\limits_{\gamma }{\left( u+iv \right)\left( dBx+idBy \right)}=\int\limits_{z\in {{A}^{-}}}{\left( i\left( \frac{\partial Bu}{\partial Bx}-\frac{\partial Bv}{\partial By} \right)-\left( \frac{\partial Bv}{\partial Bx}+\frac{\partial Bu}{\partial By} \right) \right)dB(x,y)}=0.\square</math></div>
  
Proof and algorithm: First, we normalise and scale <math>{b}^{T}y - {d}^{T}x \le 0, Ax \le b</math> and <math>{A}^{T}y \ge d</math>. Let the ''height'' <math>h</math> have the initial value <math>{h}_{0} := |\text{min } \{{b}_{1}, ..., {b}_{m}, {-d}_{1}, ..., {-d}_{n}\}|/r</math> for the reduction factor <math>r \in \; ]0, 1[</math>. Let the
+
=== Fundamental theorem of algebra ===
 +
For every non-constant polynomial <math>p \in {}^{(\omega)}\mathbb{C}</math>, there exists some <math>z \in {}^{(\omega)}\mathbb{C}</math> such that <math>p(z) = 0</math>.
  
LP min <math>\{h \in [0, {h}_{0}] : x \in {}^{\omega}\mathbb{R}_{\ge 0}^{n}, y \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, {b}^{T}y - {d}^{T}x \le h, Ax - b \le (h, ..., h)^{T} \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, d - {A}^{T}y \le (h, ..., h)^{T} \in {}^{\omega}\mathbb{R}_{\ge 0}^{n}\}</math> have for <math>\underline{v} := {v}^{T}</math> the feasible interior starting point <math>v := ({\underline{x}, \underline{y}, h)}^{T} \in {}^{\omega}\mathbb{R}_{\ge 0}^{m+n+1}</math>, e.g. <math>({\underline{0}, \underline{0}, {h}_{0})}^{T}</math>.
+
'''Indirect proof:''' By performing an affine substitution of variables, we can reduce to the case <math>1/p(0) \ne \mathcal{O}(\text{d0})</math>. Suppose that <math>p(z) \ne 0</math> for all <math>z \in {}^{(\omega)}\mathbb{C}</math>.
  
It identifies the mutually dual LPs <math>\{{d}^{T}x : d \in {}^{\omega}\mathbb{R}^{n}, x \in {P}_{\ge 0}\}</math> and min <math>\{{b}^{T}y : y \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, {A}^{T}y \ge d\}</math>.
+
Since <math>f(z) := 1/p(z)</math> is holomorphic, we have that <math>f(1/\text{d0}) = \mathcal{O}(\text{d0})</math>. By the mean value inequality <math>|f(0)| \le {|f|}_{\gamma}</math> for <math>\gamma = \partial\mathbb{B}_{r}(0)</math> and arbitrary <math>r \in {}^{(\omega)}\mathbb{R}_{&gt;0}</math>, and hence <math>f(0) = \mathcal{O}(\text{d0})</math>, which is a contradiction.<math>\square</math>
  
We successively interpolate all <math>{v}_{k}^{*} := (\text{max } {v}_{k} + \text{min } {v}_{k})/2</math> until all <math>|\Delta{v}_{k}|</math> are sufficiently small. In <math>\mathcal{O}(\omega\vartheta)</math>, we extrapolate then <math>v</math> via <math>{v}^{*}</math> into the boundary of the polytope. The <math>r</math>-fold of the distance exceeding <math>{v}^{*}</math> determines the new starting point <math>v</math>.
+
== Recommended reading ==
 
 
If min<math>{}_{k} {h}_{k} t = 0</math> follows from <math>t :=</math> min<math>{}_{k} \Delta{h}_{k}</math>, we end. Then we start over until min <math>h = 0</math> or min <math>h > 0</math> is certain. Since <math>h</math> at least halves itself for each iteration step in <math>\mathcal{O}({\omega\vartheta}^{2})</math>, the strong duality theorem yields the result.<math>\square</math>
 
 
 
== Recommended readings ==
 
[http://www.epubli.de/shop/buch/Relil-Boris-Haase-9783844208726/11049 Relil - Religion und Lebensweg]
 
  
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
  
 
[[de:Hauptseite]]
 
[[de:Hauptseite]]

Revision as of 18:06, 16 February 2020

Welcome to MWiki

Theorems of the month

Cauchy's integral theorem

Given the neighbourhood relations [math]\displaystyle{ B \subseteq {A}^{2} }[/math] and [math]\displaystyle{ D \subseteq [a, b] }[/math] for some simply connected [math]\displaystyle{ h }[/math]-set [math]\displaystyle{ A \subseteq {}^{\omega}\mathbb{C} }[/math], infinitesimal [math]\displaystyle{ h }[/math], a holomorphic function [math]\displaystyle{ f: A \rightarrow {}^{\omega}\mathbb{C} }[/math] and a closed path [math]\displaystyle{ \gamma: [a, b[\rightarrow \partial A }[/math], choosing [math]\displaystyle{ \curvearrowright B \gamma(t) = \gamma(\curvearrowright D t) }[/math] for [math]\displaystyle{ t \in [a, b[ }[/math], we have that

[math]\displaystyle{ \int\limits_{\gamma }{f(z)dBz}=0. }[/math]

Proof: By the Cauchy-Riemann partial differential equations and Green's theorem, with [math]\displaystyle{ x := \text{Re} \, z, y := \text{Im} \, z, u := \text{Re} \, f, v := \text{Im} \, f }[/math] and [math]\displaystyle{ {A}^{-} := \{z \in A : z + h + ih \in A\} }[/math], we have that

[math]\displaystyle{ \int\limits_{\gamma }{f(z)dBz}=\int\limits_{\gamma }{\left( u+iv \right)\left( dBx+idBy \right)}=\int\limits_{z\in {{A}^{-}}}{\left( i\left( \frac{\partial Bu}{\partial Bx}-\frac{\partial Bv}{\partial By} \right)-\left( \frac{\partial Bv}{\partial Bx}+\frac{\partial Bu}{\partial By} \right) \right)dB(x,y)}=0.\square }[/math]

Fundamental theorem of algebra

For every non-constant polynomial [math]\displaystyle{ p \in {}^{(\omega)}\mathbb{C} }[/math], there exists some [math]\displaystyle{ z \in {}^{(\omega)}\mathbb{C} }[/math] such that [math]\displaystyle{ p(z) = 0 }[/math].

Indirect proof: By performing an affine substitution of variables, we can reduce to the case [math]\displaystyle{ 1/p(0) \ne \mathcal{O}(\text{d0}) }[/math]. Suppose that [math]\displaystyle{ p(z) \ne 0 }[/math] for all [math]\displaystyle{ z \in {}^{(\omega)}\mathbb{C} }[/math].

Since [math]\displaystyle{ f(z) := 1/p(z) }[/math] is holomorphic, we have that [math]\displaystyle{ f(1/\text{d0}) = \mathcal{O}(\text{d0}) }[/math]. By the mean value inequality [math]\displaystyle{ |f(0)| \le {|f|}_{\gamma} }[/math] for [math]\displaystyle{ \gamma = \partial\mathbb{B}_{r}(0) }[/math] and arbitrary [math]\displaystyle{ r \in {}^{(\omega)}\mathbb{R}_{>0} }[/math], and hence [math]\displaystyle{ f(0) = \mathcal{O}(\text{d0}) }[/math], which is a contradiction.[math]\displaystyle{ \square }[/math]

Recommended reading

Nonstandard Mathematics