Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Fundamental theorems of calculus and approximation theorem)
(Representation theorems for integrals and derivatives)
(5 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
= Welcome to MWiki =
 
= Welcome to MWiki =
 
== Theorems of the month ==
 
== Theorems of the month ==
=== First fundamental theorem of exact differential and integral calculus for <abbr title="line integral">LI</abbr>s ===
+
=== Definition ===
The function <math>F(z)={\uparrow}_{\gamma }{f(\zeta ){\downarrow}\zeta }</math> where <math>\gamma: [d, x[ \, \cap \, C \rightarrow A \subseteq {}^{(\omega)}\mathbb{K}, C \subseteq \mathbb{R}, f: A \rightarrow {}^{(\omega)}\mathbb{K}, d \in G = [a, b[ \, \cap \, C</math>, and choosing <math>{}^\curvearrowright \gamma(x) = \gamma({}^\curvearrowright x)</math> is exactly differentiable, and for all <math>x \in G</math> and <math>z = \gamma(x)</math>
 
  
 +
Let <math>f_n^*(z) = f(\eta_nz)</math> <em>sisters</em> of the Taylor series <math>f(z) \in \mathcal{O}(\mathbb{D})</math> centred on 0 on the domain <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> where <math>m, n \in {}^{\omega}\mathbb{N}^{*}</math> and <math>\eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}}</math>. Then let <math>\delta_n^*f = \tilde{2}(f - f_n^*)</math> the <em>halved sister distances</em> of <math>f.</math> For <math>\mu_n^m := m!n!/(m + n)!</math>, <math>\mu</math> and <math>\eta</math> form an calculus, which can be resolved on the level of Taylor series and allows an easy and finite closed representation of integrals and derivatives.<math>\triangle</math>
  
<div style="text-align:center;"><math>F^{\prime}(z) = f(z).</math></div>
+
=== Representation theorem for integrals ===
  
==== Proof ====
+
The Taylor series (see below) <math>f(z) \in \mathcal{O}(\mathbb{D})</math> centred on 0 on <math>\mathbb{D} \subseteq {}^{\omega}\mathbb{C}</math> gives for <math>\grave{m}, n \in {}^{\omega}\mathbb{N}^*</math><div style="text-align:center;"><math>{\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square</math></div>
<math>{\downarrow}F(z)</math> <math>={\uparrow}_{t\in [d,x] \cap C}{f(\gamma (t)){{\gamma }^{\prime}}(t){\downarrow}t}-{\uparrow}_{t\in [d,x[ \, \cap \, C}{f(\gamma (t)){{\gamma }^{\prime}}(t){\downarrow}t}</math> <math>={\uparrow}_{x}{f(\gamma (t))\tfrac{\gamma ({}^\curvearrowright t)-\gamma (t)}{{}^\curvearrowright t-t}{\downarrow}t}</math> <math>=f(\gamma (x)){{\gamma}^{\prime}}(x){\downarrow}x=</math> <math>\,f(\gamma (x))({}^\curvearrowright\gamma (x)-\gamma (x))</math> <math>=f(z){\downarrow}z.\square</math>
 
  
=== Second fundamental theorem of exact differential and integral calculus for <abbr title="line integral">LI</abbr>s ===
+
=== Representation theorem for derivatives ===
Conditions above imply with <math>\gamma: G \rightarrow {}^{(\omega)}\mathbb{K}</math> that
 
  
 +
For <math>{}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C},</math> the Taylor series<div style="text-align:center;"><math>f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}},</math></div><math>\varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}}</math> and <math>f</math>'s radius of convergence <math>r \in {}^{\nu}{\mathbb{R}}_{&gt;0}</math> imply<div style="text-align:center;"><math>{{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}.</math></div>
  
<div style="text-align:center;"><math>F(\gamma (b))-F(\gamma (a))={\uparrow}_{\gamma }{{F^{\prime}}(\zeta ){\downarrow}\zeta }.</math></div>
+
==== Proof: ====
 +
Taylor's theorem<ref name="Remmert">[[w:Reinhold Remmert|<span class="wikipedia">Remmert, Reinhold</span>]]: ''Funktionentheorie 1'' : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.</ref> and the properties of the roots of unity.<math>\square</math>
  
==== Proof ====
+
== Reference ==
<math>F(\gamma (b))-F(\gamma (a))</math> <math>={+}_{t\in G}{F({}^\curvearrowright\,\gamma (t))}-F(\gamma (t))</math> <math>={+}_{t\in G}{{{F}^{\prime}}(\gamma (t))({}^\curvearrowright\,\gamma (t)-\gamma (t))}</math> <math>={\uparrow}_{t\in G}{{F^{\prime}}(\gamma (t)){{\gamma }^{\prime}}(t){\downarrow}t}</math> <math>={\uparrow}_{\gamma }{{F_{{}^\curvearrowright }^{\prime}}(\zeta ){\downarrow}\zeta }.\square</math>
+
<references />
  
=== Approximation theorem ===
+
== Recommended reading ==
The derivatives <math>f^{(s)}(x) \in {}^{\omega}\mathbb{R}</math> for <math>x \in {}^{\omega}\mathbb{R}</math> allow computing the interpolating function <math>g(x) := {+}_{r=0}^{\acute{m}}{\chi_{]x_r, x_{\grave{r}}[}(x)((x_{\grave{r}}-x)p_r(x)+(x-x_r)p_{\grave{r}}(x))/(x_{\grave{r}}-x_r)}+{+}_{r=0}^m{\chi_{\{x_r\}}(x)p_r(x)}</math> for <math>m, n \in {}^{\nu}\mathbb{N}</math> and <math>p_r(x) := {+}_{s=0}^n{f^{(s)}(x_r){(x-x_r)}^s/s!}</math> in <math>\mathcal{O}(\sigma mn)</math> where <math>f^{(s)}(x_r) = g^{(s)}(x_r)</math> holds for every <math>x_r \in {}^{\omega}\mathbb{R}</math>. Replace in the complex case <math>{}^{\omega}\mathbb{R}</math> by <math>{}^{\omega}\mathbb{C}</math> and put <math>x = \gamma(t) \in {}^{\omega}\mathbb{C}</math> for the path <math>\gamma(t)</math> where <math>t \in {}^{\omega}\mathbb{R}.\square</math>
 
  
== Recommended readings ==
 
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
  
 
[[de:Hauptseite]]
 
[[de:Hauptseite]]

Revision as of 23:05, 31 March 2024

Welcome to MWiki

Theorems of the month

Definition

Let [math]\displaystyle{ f_n^*(z) = f(\eta_nz) }[/math] sisters of the Taylor series [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] centred on 0 on the domain [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] where [math]\displaystyle{ m, n \in {}^{\omega}\mathbb{N}^{*} }[/math] and [math]\displaystyle{ \eta_n^m := \underline{1}^{2^{\lceil m/n \rceil}} }[/math]. Then let [math]\displaystyle{ \delta_n^*f = \tilde{2}(f - f_n^*) }[/math] the halved sister distances of [math]\displaystyle{ f. }[/math] For [math]\displaystyle{ \mu_n^m := m!n!/(m + n)! }[/math], [math]\displaystyle{ \mu }[/math] and [math]\displaystyle{ \eta }[/math] form an calculus, which can be resolved on the level of Taylor series and allows an easy and finite closed representation of integrals and derivatives.[math]\displaystyle{ \triangle }[/math]

Representation theorem for integrals

The Taylor series (see below) [math]\displaystyle{ f(z) \in \mathcal{O}(\mathbb{D}) }[/math] centred on 0 on [math]\displaystyle{ \mathbb{D} \subseteq {}^{\omega}\mathbb{C} }[/math] gives for [math]\displaystyle{ \grave{m}, n \in {}^{\omega}\mathbb{N}^* }[/math]

[math]\displaystyle{ {\uparrow}_0^z...{\uparrow}_0^{\zeta_2}{f(\zeta_1){\downarrow}\zeta_1\;...\;{\downarrow}\zeta_n} = \widetilde{n!} f(z\mu_n) z^n.\square }[/math]

Representation theorem for derivatives

For [math]\displaystyle{ {}^{\widetilde{\nu}}\dot{\mathbb{C}} \subset \mathbb{D} \subseteq {}^{\omega}\mathbb{C}, }[/math] the Taylor series

[math]\displaystyle{ f(z):=f(0) + {\LARGE{\textbf{+}}}_{m=1}^{\omega }{\widetilde{m!}\,{{f}^{(m)}}(0){z^m}}, }[/math]

[math]\displaystyle{ \varepsilon := \tilde{2}^j\tilde{r}, j \in {}^{\omega}\mathbb{Z}, n = \epsilon^{\sigma} \in {}^{\omega}\mathbb{N}^{*}, u :=\epsilon^{\tilde{n} \hat{\underline{\pi}}} }[/math] and [math]\displaystyle{ f }[/math]'s radius of convergence [math]\displaystyle{ r \in {}^{\nu}{\mathbb{R}}_{>0} }[/math] imply

[math]\displaystyle{ {{f}^{(n)}}(0)=2^{jn}\acute{n}!{\LARGE{\textbf{+}}}_{k=1}^{n}{\delta_n^* f(\tilde{2}^j u^k)}. }[/math]

Proof:

Taylor's theorem[1] and the properties of the roots of unity.[math]\displaystyle{ \square }[/math]

Reference

  1. Remmert, Reinhold: Funktionentheorie 1 : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.

Recommended reading

Nonstandard Mathematics