Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Cauchy's integral theorem, fundamental theorem of algebra and Newton’s method)
(Leibniz' differentiation rule and Beal's theorem)
Line 2: Line 2:
 
= Welcome to MWiki =
 
= Welcome to MWiki =
 
== Theorems of the month ==
 
== Theorems of the month ==
=== Cauchy's integral theorem ===
+
=== Leibniz' differentiation rule ===
Given the <abbr title="neighbourhood relation">NR</abbr>s <math>B \subseteq {D}^{2}</math> and <math>A \subseteq [a, b]</math> for some <math>h</math>-domain <math>D \subseteq {}^{\omega}\mathbb{C}</math>, infinitesimal <math>h</math>, <math>f \in \mathcal{O}(D)</math> and a <abbr title="closed path">CP</abbr> <math>\gamma: [a, b[\rightarrow \partial D</math>, choosing <math>{}^\curvearrowright \gamma(t) = \gamma({}^\curvearrowright t)</math> for <math>t \in [a, b[</math> gives
 
<div style="text-align:center;"><math>{\uparrow}_{\gamma }{f(z){\downarrow}z}=0.</math></div>
 
'''Proof:''' By the Cauchy-Riemann differential equations and Green's theorem, with <math>x := \text{Re} \, z, y := \text{Im} \, z, u := \text{Re} \, f, v := \text{Im} \, f</math> and <math>{D}^{-} := \{z \in D : z + h + \underline{h} \in D\}</math>, it holds that
 
<div style="text-align:center;"><math>{\uparrow}_{\gamma }{f(z){\downarrow}z}={\uparrow}_{\gamma }{\left( u+\underline{v} \right)\left( {\downarrow}x+{\downarrow}\underline{y} \right)}={\uparrow}_{z\in {{D}^{-}}}{\left( \left( \tfrac{{\downarrow} \underline{u}}{{\downarrow} x}-\tfrac{{\downarrow} \underline{v}}{{\downarrow} y} \right)-\left( \tfrac{{\downarrow} v}{{\downarrow} x}+\tfrac{{\downarrow} u}{{\downarrow} y} \right) \right){\downarrow}(x,y)}=0.\square</math></div>
 
  
=== Fundamental theorem of algebra ===
+
For <math>f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math> and <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math>, choosing <math>\curvearrowright a(x) = a(\curvearrowright x)</math> and <math>\curvearrowright b(x) = b(\curvearrowright x)</math>, it holds that<div style="text-align:center;"><math>\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).</math></div>
Every non-constant polynomial <math>p \in {}^{(\omega)}\mathbb{C}</math> has at least one complex root.
 
  
'''Indirect proof:''' By performing an affine substitution of variables, reduce to the case <math>\widetilde{p(0)} \ne \mathcal{O}(\iota)</math>. Suppose that <math>p(z) \ne 0</math> for all <math>z \in {}^{(\omega)}\mathbb{C}</math>.
+
==== Proof: ====
 +
<div style="text-align:center;"><math>\begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &={\left( {\uparrow}_{a(\curvearrowright x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).\square\end{aligned}</math></div>
  
Since <math>f(z) := \widetilde{p(z)}</math> is holomorphic, it holds that <math>f(\tilde{\iota}) = \mathcal{O}(\iota)</math>. By the mean value inequality <math>|f(0)| \le {|f|}_{\gamma}</math> for <math>\gamma = \partial\mathbb{B}_{r}(0)</math> and arbitrary <math>r \in {}^{(\omega)}\mathbb{R}_{&gt;0}</math>, and hence <math>f(0) = \mathcal{O}(\iota)</math>, which is a contradiction (and hence exactly <math>z(m) = m</math> holds).<math>\square</math>
+
=== Beal's theorem ===
 +
Equation <math>a^m + b^n = c^k</math> for <math>a, b, c \in \mathbb{N}^{*}</math> and <math>k, m, n \in \mathbb{N}_{\ge 3}</math> implies gcd<math>(a, b, c) > 1.</math>
  
=== Newton’s method ===
+
==== Proof: ====
Demanding above <math>f(\curvearrowright z)=f(z)+f^\prime(z){\downarrow}z=0</math> implies <math>z_{\grave{n}} := z_n-{f^\prime(z_n)}^{-1}f(z_n)</math> if <math>{f^\prime(z_n)}^{-1}</math> is invertible resulting in quadratic convergence close to a zero.<math>\square</math>
+
From <math>b^n = (c^{k-r} &#8211; a^m)(c^r  + 1) = c^k &#8211; a^m + c^{k-r} &#8211; a^mc^r</math>, it follows that <math>a^m =c^{k-\hat{r}}</math> and <math>r \in {}^{\omega}\mathbb{Q}_{>0}</math> by the Gelfond-Schneider theorem, which proves the claim with gcd<math>(a,c)>1</math> after exponentiation.<math>\square</math>
 +
 
 +
=== Conclusion: ===
 +
The Fermat-Catalan conjecture can be proven analogously and an infinite descent implies because of gcd<math>(a, b, c) > 1</math> that no <math>n \in {}^{\omega}\mathbb{N}_{\ge 3}</math> satisfies <math>a^n + b^n = c^n</math> for arbitrary <math>a, b, c \in {}^{\omega}\mathbb{N}^{*}.\square</math>
 +
 
 +
== Recommended reading ==
  
== Recommended readings ==
 
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
  
 
[[de:Hauptseite]]
 
[[de:Hauptseite]]

Revision as of 18:39, 29 February 2024

Welcome to MWiki

Theorems of the month

Leibniz' differentiation rule

For [math]\displaystyle{ f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright x := {(s, {x}_{2}, ..., {x}_{n})}^{T} }[/math] and [math]\displaystyle{ s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\} }[/math], choosing [math]\displaystyle{ \curvearrowright a(x) = a(\curvearrowright x) }[/math] and [math]\displaystyle{ \curvearrowright b(x) = b(\curvearrowright x) }[/math], it holds that

[math]\displaystyle{ \tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)). }[/math]

Proof:

[math]\displaystyle{ \begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right) &={\left( {\uparrow}_{a(\curvearrowright x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright x,t)-f(x,t)){\downarrow}t}+{\uparrow}_{b(x)}^{b(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t}-{\uparrow}_{a(x)}^{a(\curvearrowright x)}{f(\curvearrowright x,t){\downarrow}t} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}t}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright x,a(x)).\square\end{aligned} }[/math]

Beal's theorem

Equation [math]\displaystyle{ a^m + b^n = c^k }[/math] for [math]\displaystyle{ a, b, c \in \mathbb{N}^{*} }[/math] and [math]\displaystyle{ k, m, n \in \mathbb{N}_{\ge 3} }[/math] implies gcd[math]\displaystyle{ (a, b, c) \gt 1. }[/math]

Proof:

From [math]\displaystyle{ b^n = (c^{k-r} – a^m)(c^r + 1) = c^k – a^m + c^{k-r} – a^mc^r }[/math], it follows that [math]\displaystyle{ a^m =c^{k-\hat{r}} }[/math] and [math]\displaystyle{ r \in {}^{\omega}\mathbb{Q}_{\gt 0} }[/math] by the Gelfond-Schneider theorem, which proves the claim with gcd[math]\displaystyle{ (a,c)\gt 1 }[/math] after exponentiation.[math]\displaystyle{ \square }[/math]

Conclusion:

The Fermat-Catalan conjecture can be proven analogously and an infinite descent implies because of gcd[math]\displaystyle{ (a, b, c) \gt 1 }[/math] that no [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 3} }[/math] satisfies [math]\displaystyle{ a^n + b^n = c^n }[/math] for arbitrary [math]\displaystyle{ a, b, c \in {}^{\omega}\mathbb{N}^{*}.\square }[/math]

Recommended reading

Nonstandard Mathematics