Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
m (Cauchy's integral theorem)
(Proof:)
(29 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
= Welcome to MWiki =
 
= Welcome to MWiki =
 
== Theorems of the month ==
 
== Theorems of the month ==
=== Cauchy's integral theorem ===
+
=== Leibniz' differentiation rule ===
Given the neighbourhood relations <math>B \subseteq {A}^{2}</math> and <math>D \subseteq [a, b]</math> for some simply connected <math>h</math>-set <math>A \subseteq {}^{\omega}\mathbb{C}</math>, infinitesimal <math>h</math>, a holomorphic function <math>f: A \rightarrow {}^{\omega}\mathbb{C}</math> and a closed path <math>\gamma: [a, b[\rightarrow \partial A</math>, choosing <math>\curvearrowright B \gamma(t) = \gamma(\curvearrowright D t)</math> for <math>t \in [a, b[</math>, it holds that
 
<div style="text-align:center;"><math>\int\limits_{\gamma }{f(z)dBz}=0.</math></div>
 
'''Proof:''' By the Cauchy-Riemann partial differential equations and Green's theorem, with <math>x := \text{Re} \, z, y := \text{Im} \, z, u := \text{Re} \, f, v := \text{Im} \, f</math> and <math>{A}^{-} := \{z \in A : z + h + ih \in A\}</math>, we have that
 
<div style="text-align:center;"><math>\int\limits_{\gamma }{f(z)dBz}=\int\limits_{\gamma }{\left( u+iv \right)\left( dBx+idBy \right)}=\int\limits_{z\in {{A}^{-}}}{\left( i\left( \frac{\partial Bu}{\partial Bx}-\frac{\partial Bv}{\partial By} \right)-\left( \frac{\partial Bv}{\partial Bx}+\frac{\partial Bu}{\partial By} \right) \right)dB(x,y)}=0.\square</math></div>
 
  
=== Fundamental theorem of algebra ===
+
For <math>f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright B x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math>, and <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math>, choosing <math>\curvearrowright D a(x) = a(\curvearrowright B x)</math> and <math>\curvearrowright D b(x) = b(\curvearrowright B x)</math> it holds that<div style="text-align:center;"><math>\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)).</math></div>
For every non-constant polynomial <math>p \in {}^{(\omega)}\mathbb{C}</math>, there exists some <math>z \in {}^{(\omega)}\mathbb{C}</math> such that <math>p(z) = 0</math>.
 
  
'''Indirect proof:''' By performing an affine substitution of variables, reduce to the case <math>1/p(0) \ne \mathcal{O}(\text{d0})</math>. Suppose that <math>p(z) \ne 0</math> for all <math>z \in {}^{(\omega)}\mathbb{C}</math>.
+
==== Proof: ====
 +
<div style="text-align:center;"><math>\begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right) &={\left( {\uparrow}_{a(\curvearrowright Bx)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright Bx,t)-f(x,t)){\downarrow}Dt}+{\uparrow}_{b(x)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{a(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)).\square\end{aligned}</math></div>
  
Since <math>f(z) := 1/p(z)</math> is holomorphic, it holds that <math>f(1/\text{d0}) = \mathcal{O}(\text{d0})</math>. By the mean value inequality <math>|f(0)| \le {|f|}_{\gamma}</math> for <math>\gamma = \partial\mathbb{B}_{r}(0)</math> and arbitrary <math>r \in {}^{(\omega)}\mathbb{R}_{&gt;0}</math>, and hence <math>f(0) = \mathcal{O}(\text{d0})</math>, which is a contradiction.<math>\square</math>
+
=== Beal's theorem ===
 +
Equation <math>a^m + b^n = c^k</math> where <math>a, b, c \in \mathbb{N}^{*}</math> and <math>k, m, n \in \mathbb{N}_{\ge 3}</math> implies gcd<math>(a, b, c) > 1.</math>
 +
 
 +
==== Proof: ====
 +
Proof: Real points between <math>r, s \in {}^{\omega}\mathbb{Q}</math> do not avoid that every nontrivial equation for <math>c^k > 1</math> is given by <math>(a^{m-r} + ib^{n-s})(a^r - ib^s) =c^k +i(a^rb^{n-s} - a^{m-r}b^s)</math> where all relations <math>a^{m-\hat{r}} = b^{n-\hat{s}}</math> then imply <math>p \mid</math> gcd<math>(a, b, c)</math> as well as the claim for <math>p \in {}^{\omega} \mathbb{P}.\square</math>
 +
 
 +
=== Conclusion: ===
 +
The preceding theorem enables an infinite descent because of gcd<math>(a, b, c) > 1</math> such that no <math>n \in {}^{\omega}\mathbb{N}_{\ge 3}</math> satisfies <math>a^n + b^n = c^n</math> for arbitrary <math>a, b, c \in {}^{\omega}\mathbb{N}^{*}.\square</math>
 +
 
 +
== Recommended reading ==
  
== Recommended readings ==
 
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
  
 
[[de:Hauptseite]]
 
[[de:Hauptseite]]

Revision as of 15:58, 1 March 2023

Welcome to MWiki

Theorems of the month

Leibniz' differentiation rule

For [math]\displaystyle{ f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright B x := {(s, {x}_{2}, ..., {x}_{n})}^{T} }[/math], and [math]\displaystyle{ s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\} }[/math], choosing [math]\displaystyle{ \curvearrowright D a(x) = a(\curvearrowright B x) }[/math] and [math]\displaystyle{ \curvearrowright D b(x) = b(\curvearrowright B x) }[/math] it holds that

[math]\displaystyle{ \tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)). }[/math]

Proof:

[math]\displaystyle{ \begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right) &={\left( {\uparrow}_{a(\curvearrowright Bx)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright Bx,t)-f(x,t)){\downarrow}Dt}+{\uparrow}_{b(x)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{a(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)).\square\end{aligned} }[/math]

Beal's theorem

Equation [math]\displaystyle{ a^m + b^n = c^k }[/math] where [math]\displaystyle{ a, b, c \in \mathbb{N}^{*} }[/math] and [math]\displaystyle{ k, m, n \in \mathbb{N}_{\ge 3} }[/math] implies gcd[math]\displaystyle{ (a, b, c) \gt 1. }[/math]

Proof:

Proof: Real points between [math]\displaystyle{ r, s \in {}^{\omega}\mathbb{Q} }[/math] do not avoid that every nontrivial equation for [math]\displaystyle{ c^k \gt 1 }[/math] is given by [math]\displaystyle{ (a^{m-r} + ib^{n-s})(a^r - ib^s) =c^k +i(a^rb^{n-s} - a^{m-r}b^s) }[/math] where all relations [math]\displaystyle{ a^{m-\hat{r}} = b^{n-\hat{s}} }[/math] then imply [math]\displaystyle{ p \mid }[/math] gcd[math]\displaystyle{ (a, b, c) }[/math] as well as the claim for [math]\displaystyle{ p \in {}^{\omega} \mathbb{P}.\square }[/math]

Conclusion:

The preceding theorem enables an infinite descent because of gcd[math]\displaystyle{ (a, b, c) \gt 1 }[/math] such that no [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 3} }[/math] satisfies [math]\displaystyle{ a^n + b^n = c^n }[/math] for arbitrary [math]\displaystyle{ a, b, c \in {}^{\omega}\mathbb{N}^{*}.\square }[/math]

Recommended reading

Nonstandard Mathematics