Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
m (RU method)
(Proof:)
(35 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
= Welcome to MWiki =
 
= Welcome to MWiki =
== Theorem of the month ==
+
== Theorems of the month ==
=== RU method ===
+
=== Leibniz' differentiation rule ===
If <math>A \in {}^{\nu}\mathbb{Q}^{n \times n}</math> is regular in the linear system (LS) <math>Ax = b \in  {}^{\nu}\mathbb{Q}^{n}</math> for <math>n \in {}^{\nu}\mathbb{N}^*</math>, the ''root of unity method (<math>RU</math> method)'' computes <math>x \in {}^{\nu}\mathbb{Q}^{n}</math> for <math>A \in {}^{\nu}\mathbb{Q}^{n \times n}</math> in <math>\mathcal{O}(n^2)</math>.
 
  
=== Proof and algorithm ===
+
For <math>f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright B x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math>, and <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math>, choosing <math>\curvearrowright D a(x) = a(\curvearrowright B x)</math> and <math>\curvearrowright D b(x) = b(\curvearrowright B x)</math> it holds that<div style="text-align:center;"><math>\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)).</math></div>
Let <math>R_1 := (r_{1jk}) = (r_{1kj}) = R_1^T \in {}^{\nu}\mathbb{C}^{n \times n}, n \in {}^{\nu}2\mathbb{N}^*, r_{11k} := 1</math> and for <math>j &gt; 1</math> as well as <math>n_{jk} := j + k - 3</math> both <math>r_{1jk} := \hat{n}e^{i\tau n_{jk}/n}</math> for <math>n_{jk} &lt; n</math> and <math>r_{1jk} := \hat{n}e^{i\tau(n_{jk} - \acute{n})/n}</math> for <math>n_{jk} \ge n</math>. Interchanging the first and <math>j</math>-th row resp. column position and correspondingly interchanging the remaining row and column positions yields matrices <math>R_j = R_j^T</math> for <math>j &gt; 1</math>. Let <math>\delta_{jk}</math> be the Kronecker delta and <math>A := (a_{jk})</math>.
 
  
If <math>a_{jk} \le 0</math> is given for at least one couple <math>(j, k)</math>, then compute the sums <math>s_0 := \sum\limits_{j=1}^m{b_j\varepsilon^j}</math> for an arbitrary transcendental number <math>\varepsilon</math> and <math>s_k := \sum\limits_{j=1}^m{a_{jk}\varepsilon^j} \ne 0</math> for all <math>k</math>. Replace <math>x_k</math> by <math>-x_k</math> for <math>s_k &lt; 0</math>. Add a multiple of <math>s^Tx</math> resp. <math>s_0</math> to <math>Ax = b</math>, such that <math>a_{jk} &gt; 0</math> holds for all <math>(j, k)</math>. Let <math>b_j = 1</math> for all <math>j</math> wlog. For <math>D_j := (d_{jk}), d_{jk} = \delta_{jk}⁄a_{jk}, C_j := D_j R_j</math> and <math>x_k^{(0)} := \hat{n}/ \max_j a_{jk}</math>, let <math>x^{(\grave{m})} = x^{(m)} + C_j^{-1}(b - Ax^{(m)}).\square</math>
+
==== Proof: ====
 +
<div style="text-align:center;"><math>\begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right) &={\left( {\uparrow}_{a(\curvearrowright Bx)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright Bx,t)-f(x,t)){\downarrow}Dt}+{\uparrow}_{b(x)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{a(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)).\square\end{aligned}</math></div>
  
=== Corollary ===
+
=== Beal's theorem ===
The RU method allows to determine every eigenvalue and -vector of <math>Ax = \lambda x \in {}^{\nu}\mathbb{Q}^{n} + {}^{\nu}\mathbb{Q}^{n}</math> for <math>n \in {}^{\nu}2\mathbb{N}^*, \lambda \in {}^{\nu}\mathbb{Q}+ {i}^{\nu}\mathbb{Q}</math> and <math>\in {}^{\nu}\mathbb{Q}^{n \times n}</math> in <math>\mathcal{O}(n^2)</math> by putting <math>x^{\prime(\grave{m})} = C_j^{-1}AC_j x^{\prime(m)}</math>.
+
Equation <math>a^m + b^n = c^k</math> where <math>a, b, c \in \mathbb{N}^{*}</math> and <math>k, m, n \in \mathbb{N}_{\ge 3}</math> implies gcd<math>(a, b, c) > 1.</math>
 +
 
 +
==== Proof: ====
 +
Proof: Real points between <math>r, s \in {}^{\omega}\mathbb{Q}</math> do not avoid that every nontrivial equation for <math>c^k > 1</math> is given by <math>(a^{m-r} + ib^{n-s})(a^r - ib^s) =c^k +i(a^rb^{n-s} - a^{m-r}b^s)</math> where all relations <math>a^{m-\hat{r}} = b^{n-\hat{s}}</math> then imply <math>p \mid</math> gcd<math>(a, b, c)</math> as well as the claim for <math>p \in {}^{\omega} \mathbb{P}.\square</math>
 +
 
 +
=== Conclusion: ===
 +
The preceding theorem enables an infinite descent because of gcd<math>(a, b, c) > 1</math> such that no <math>n \in {}^{\omega}\mathbb{N}_{\ge 3}</math> satisfies <math>a^n + b^n = c^n</math> for arbitrary <math>a, b, c \in {}^{\omega}\mathbb{N}^{*}.\square</math>
  
'''Remark:''' Extending the theorem to complex <math>A</math> and <math>b</math> is easy. By the Banach fixed-point theorem, the \(RU\) method converges linearly for every regular LS.
 
 
== Recommended reading ==
 
== Recommended reading ==
  

Revision as of 15:58, 1 March 2023

Welcome to MWiki

Theorems of the month

Leibniz' differentiation rule

For [math]\displaystyle{ f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright B x := {(s, {x}_{2}, ..., {x}_{n})}^{T} }[/math], and [math]\displaystyle{ s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\} }[/math], choosing [math]\displaystyle{ \curvearrowright D a(x) = a(\curvearrowright B x) }[/math] and [math]\displaystyle{ \curvearrowright D b(x) = b(\curvearrowright B x) }[/math] it holds that

[math]\displaystyle{ \tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)). }[/math]

Proof:

[math]\displaystyle{ \begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right) &={\left( {\uparrow}_{a(\curvearrowright Bx)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright Bx,t)-f(x,t)){\downarrow}Dt}+{\uparrow}_{b(x)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{a(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)).\square\end{aligned} }[/math]

Beal's theorem

Equation [math]\displaystyle{ a^m + b^n = c^k }[/math] where [math]\displaystyle{ a, b, c \in \mathbb{N}^{*} }[/math] and [math]\displaystyle{ k, m, n \in \mathbb{N}_{\ge 3} }[/math] implies gcd[math]\displaystyle{ (a, b, c) \gt 1. }[/math]

Proof:

Proof: Real points between [math]\displaystyle{ r, s \in {}^{\omega}\mathbb{Q} }[/math] do not avoid that every nontrivial equation for [math]\displaystyle{ c^k \gt 1 }[/math] is given by [math]\displaystyle{ (a^{m-r} + ib^{n-s})(a^r - ib^s) =c^k +i(a^rb^{n-s} - a^{m-r}b^s) }[/math] where all relations [math]\displaystyle{ a^{m-\hat{r}} = b^{n-\hat{s}} }[/math] then imply [math]\displaystyle{ p \mid }[/math] gcd[math]\displaystyle{ (a, b, c) }[/math] as well as the claim for [math]\displaystyle{ p \in {}^{\omega} \mathbb{P}.\square }[/math]

Conclusion:

The preceding theorem enables an infinite descent because of gcd[math]\displaystyle{ (a, b, c) \gt 1 }[/math] such that no [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 3} }[/math] satisfies [math]\displaystyle{ a^n + b^n = c^n }[/math] for arbitrary [math]\displaystyle{ a, b, c \in {}^{\omega}\mathbb{N}^{*}.\square }[/math]

Recommended reading

Nonstandard Mathematics