Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
m (Counting theorem for algebraic numbers)
(Proof:)
(46 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
= Welcome to MWiki =
 
= Welcome to MWiki =
== Theorem of the month ==
+
== Theorems of the month ==
=== Counting theorem for algebraic numbers ===
+
=== Leibniz' differentiation rule ===
  
The number <math>\mathbb{A}(m, n)</math> of algebraic numbers of polynomial or series degree <math>m</math> and thus in general for the Riemann zeta function <math>\zeta</math> asymptotically satisfies the equation\[\mathbb{A}(m, n) = \widehat{\zeta(\grave{m})}\,z(m){{(2n+1)}^{m}}\left( n+\mathcal{O}({_e}n) \right),\]where <math>z(m)</math> is the average number of zeros of a polynomial or series.
+
For <math>f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright B x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math>, and <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math>, choosing <math>\curvearrowright D a(x) = a(\curvearrowright B x)</math> and <math>\curvearrowright D b(x) = b(\curvearrowright B x)</math> it holds that<div style="text-align:center;"><math>\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)).</math></div>
  
 
==== Proof: ====
 
==== Proof: ====
The case <math>m = 1</math> requires by <ref name="Scheid">[[w:Harald Scheid|<span class="wikipedia">Scheid, Harald</span>]]: ''Zahlentheorie'' : 1st Ed.; 1991; Bibliographisches Institut; Mannheim; ISBN 9783411148417, p. 323.</ref> the error term <math>\mathcal{O}({_e}n n)</math> and represents the number <math>4\sum\limits_{k=1}^{n}{\varphi (k)}-1</math> by the <math>\varphi</math>-function. For <math>m > 1</math>, the divisibility conditions neither change the error term <math>\mathcal{O}({_e}n)</math> nor the leading term. Polynomials or series such that <math>\text{gcd}({a}_{0}, {a}_{1}, ..., {a}_{m}) \ne 1</math> are excluded by <math>1/\zeta(\grave{m})</math>: The latter is given by taking the product over the prime numbers <math>p</math> of all <math>(1 - {p}^{-\grave{m}})</math> absorbing here multiples of <math>p</math> and representing sums of geometric series.<math>\square</math>
+
<div style="text-align:center;"><math>\begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right) &={\left( {\uparrow}_{a(\curvearrowright Bx)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright Bx,t)-f(x,t)){\downarrow}Dt}+{\uparrow}_{b(x)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{a(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)).\square\end{aligned}</math></div>
 +
 
 +
=== Beal's theorem ===
 +
Equation <math>a^m + b^n = c^k</math> where <math>a, b, c \in \mathbb{N}^{*}</math> and <math>k, m, n \in \mathbb{N}_{\ge 3}</math> implies gcd<math>(a, b, c) > 1.</math>
 +
 
 +
==== Proof: ====
 +
Proof: Real points between <math>r, s \in {}^{\omega}\mathbb{Q}</math> do not avoid that every nontrivial equation for <math>c^k > 1</math> is given by <math>(a^{m-r} + ib^{n-s})(a^r - ib^s) =c^k +i(a^rb^{n-s} - a^{m-r}b^s)</math> where all relations <math>a^{m-\hat{r}} = b^{n-\hat{s}}</math> then imply <math>p \mid</math> gcd<math>(a, b, c)</math> as well as the claim for <math>p \in {}^{\omega} \mathbb{P}.\square</math>
 +
 
 +
=== Conclusion: ===
 +
The preceding theorem enables an infinite descent because of gcd<math>(a, b, c) > 1</math> such that no <math>n \in {}^{\omega}\mathbb{N}_{\ge 3}</math> satisfies <math>a^n + b^n = c^n</math> for arbitrary <math>a, b, c \in {}^{\omega}\mathbb{N}^{*}.\square</math>
  
 
== Recommended reading ==
 
== Recommended reading ==
  
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
== References ==
 
<references />
 
  
 
[[de:Hauptseite]]
 
[[de:Hauptseite]]

Revision as of 15:58, 1 March 2023

Welcome to MWiki

Theorems of the month

Leibniz' differentiation rule

For [math]\displaystyle{ f: {}^{(\omega)}\mathbb{K}^{\grave{n}} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright B x := {(s, {x}_{2}, ..., {x}_{n})}^{T} }[/math], and [math]\displaystyle{ s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\} }[/math], choosing [math]\displaystyle{ \curvearrowright D a(x) = a(\curvearrowright B x) }[/math] and [math]\displaystyle{ \curvearrowright D b(x) = b(\curvearrowright B x) }[/math] it holds that

[math]\displaystyle{ \tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)). }[/math]

Proof:

[math]\displaystyle{ \begin{aligned}\tfrac{{\downarrow} }{{\downarrow} {{x}_{1}}}\left( {\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right) &={\left( {\uparrow}_{a(\curvearrowright Bx)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{b(x)}{f(x,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\left( {\uparrow}_{a(x)}^{b(x)}{(f(\curvearrowright Bx,t)-f(x,t)){\downarrow}Dt}+{\uparrow}_{b(x)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt}-{\uparrow}_{a(x)}^{a(\curvearrowright Bx)}{f(\curvearrowright Bx,t){\downarrow}Dt} \right)}/{{\downarrow} {{x}_{1}}}\; \\ &={\uparrow}_{a(x)}^{b(x)}{\tfrac{{\downarrow} f(x,t)}{{\downarrow} {{x}_{1}}}{\downarrow}Dt}+\tfrac{{\downarrow} b(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,b(x))-\tfrac{{\downarrow} a(x)}{{\downarrow} {{x}_{1}}}f(\curvearrowright Bx,a(x)).\square\end{aligned} }[/math]

Beal's theorem

Equation [math]\displaystyle{ a^m + b^n = c^k }[/math] where [math]\displaystyle{ a, b, c \in \mathbb{N}^{*} }[/math] and [math]\displaystyle{ k, m, n \in \mathbb{N}_{\ge 3} }[/math] implies gcd[math]\displaystyle{ (a, b, c) \gt 1. }[/math]

Proof:

Proof: Real points between [math]\displaystyle{ r, s \in {}^{\omega}\mathbb{Q} }[/math] do not avoid that every nontrivial equation for [math]\displaystyle{ c^k \gt 1 }[/math] is given by [math]\displaystyle{ (a^{m-r} + ib^{n-s})(a^r - ib^s) =c^k +i(a^rb^{n-s} - a^{m-r}b^s) }[/math] where all relations [math]\displaystyle{ a^{m-\hat{r}} = b^{n-\hat{s}} }[/math] then imply [math]\displaystyle{ p \mid }[/math] gcd[math]\displaystyle{ (a, b, c) }[/math] as well as the claim for [math]\displaystyle{ p \in {}^{\omega} \mathbb{P}.\square }[/math]

Conclusion:

The preceding theorem enables an infinite descent because of gcd[math]\displaystyle{ (a, b, c) \gt 1 }[/math] such that no [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 3} }[/math] satisfies [math]\displaystyle{ a^n + b^n = c^n }[/math] for arbitrary [math]\displaystyle{ a, b, c \in {}^{\omega}\mathbb{N}^{*}.\square }[/math]

Recommended reading

Nonstandard Mathematics