Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Counting theorem for algebraic numbers)
(44 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
= Welcome to MWiki =
 
= Welcome to MWiki =
 
== Theorem of the month ==
 
== Theorem of the month ==
=== Finite representation for odd <math>\zeta</math>-arguments ===
+
=== Counting theorem for algebraic numbers ===
  
Using the digamma function <math>\psi</math>, it holds for <math>n \in {}^{\omega}2\mathbb{N}^{*}</math>, small <math>\varepsilon \in ]0, 1]</math> and <math>{{d}_{\varepsilon k n}}:={{\varepsilon}^{{\hat{n}}}}{e}^{\hat{n}2k\pi i}</math> that<div style="text-align:center;"><math>\zeta(\grave{n}) = \underset{\varepsilon \to 0}{\mathop{\lim }}\,\widehat{-\varepsilon n}\sum\limits_{k=1}^{n}{\left( \gamma +\psi ({{d}_{\varepsilon k n}}) \right)}+\mathcal{O}(\varepsilon )</math></div>and<div style="text-align:center;"><math>\zeta(\grave{n}) = \underset{\varepsilon \to 0}{\mathop{\lim }}\,\widehat{2\varepsilon n}\sum\limits_{k=1}^{n}{\left( \psi ({{d}_{\varepsilon k n}}{{i}^{\hat{n}2}})-\psi ({{d}_{\varepsilon k n}}) \right)}+\mathcal{O}({{\varepsilon }^{2}}).</math></div>
+
The number <math>\mathbb{A}(m, n)</math> of algebraic numbers of polynomial or series degree <math>m</math> and thus in general for the Riemann zeta function <math>\zeta</math> asymptotically satisfies the equation <math>\mathbb{A}(m, n) = \widetilde{\zeta(\grave{m})}\,z(m){{(2n+1)}^{m}}\left( n+\mathcal{O}({_e}n) \right)</math>, where <math>z(m)</math> is the average number of zeros of a polynomial or series.
  
 
==== Proof: ====
 
==== Proof: ====
The claim results easily via the geometric series from <div style="text-align:center;"><math>\psi (z)+\gamma +\hat{z}=\sum\limits_{m=1}^{\omega }{\left( \hat{m}-\widehat{m+z} \right)}=-\sum\limits_{m=1}^{\omega }{\zeta(\grave{m}){{(-z)}^{m}}}=z\sum\limits_{m=1}^{\omega }{\hat{m}\widehat{m+z}}.\square</math></div>
+
The case <math>m = 1</math> requires by <ref name="Scheid">[[w:Harald Scheid|<span class="wikipedia">Scheid, Harald</span>]]: ''Zahlentheorie'' : 1st Ed.; 1991; Bibliographisches Institut; Mannheim; ISBN 9783411148417, p. 323.</ref> the error term <math>\mathcal{O}({_e}n n)</math> and represents the number <math>4\sum\limits_{k=1}^{n}{\varphi (k)}-1</math> by the <math>\varphi</math>-function. For <math>m > 1</math>, the divisibility conditions neither change the error term <math>\mathcal{O}({_e}n)</math> nor the leading term. Polynomials or series such that <math>\text{gcd}({a}_{0}, {a}_{1}, ..., {a}_{m}) \ne 1</math> are excluded by <math>1/\zeta(\grave{m})</math>: The latter is given by taking the product over the prime numbers <math>p</math> of all <math>(1 - {p}^{-\grave{m}})</math> absorbing here multiples of <math>p</math> and representing sums of geometric series.<math>\square</math>
  
 
== Recommended reading ==
 
== Recommended reading ==
  
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 +
 +
== References ==
 +
<references />
  
 
[[de:Hauptseite]]
 
[[de:Hauptseite]]

Revision as of 23:23, 30 June 2022

Welcome to MWiki

Theorem of the month

Counting theorem for algebraic numbers

The number [math]\displaystyle{ \mathbb{A}(m, n) }[/math] of algebraic numbers of polynomial or series degree [math]\displaystyle{ m }[/math] and thus in general for the Riemann zeta function [math]\displaystyle{ \zeta }[/math] asymptotically satisfies the equation [math]\displaystyle{ \mathbb{A}(m, n) = \widetilde{\zeta(\grave{m})}\,z(m){{(2n+1)}^{m}}\left( n+\mathcal{O}({_e}n) \right) }[/math], where [math]\displaystyle{ z(m) }[/math] is the average number of zeros of a polynomial or series.

Proof:

The case [math]\displaystyle{ m = 1 }[/math] requires by [1] the error term [math]\displaystyle{ \mathcal{O}({_e}n n) }[/math] and represents the number [math]\displaystyle{ 4\sum\limits_{k=1}^{n}{\varphi (k)}-1 }[/math] by the [math]\displaystyle{ \varphi }[/math]-function. For [math]\displaystyle{ m \gt 1 }[/math], the divisibility conditions neither change the error term [math]\displaystyle{ \mathcal{O}({_e}n) }[/math] nor the leading term. Polynomials or series such that [math]\displaystyle{ \text{gcd}({a}_{0}, {a}_{1}, ..., {a}_{m}) \ne 1 }[/math] are excluded by [math]\displaystyle{ 1/\zeta(\grave{m}) }[/math]: The latter is given by taking the product over the prime numbers [math]\displaystyle{ p }[/math] of all [math]\displaystyle{ (1 - {p}^{-\grave{m}}) }[/math] absorbing here multiples of [math]\displaystyle{ p }[/math] and representing sums of geometric series.[math]\displaystyle{ \square }[/math]

Recommended reading

Nonstandard Mathematics

References

  1. Scheid, Harald: Zahlentheorie : 1st Ed.; 1991; Bibliographisches Institut; Mannheim; ISBN 9783411148417, p. 323.