Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Welcome to MWiki)
(Counting theorem for algebraic numbers)
(45 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
= Welcome to MWiki =
 
= Welcome to MWiki =
 
== Theorem of the month ==
 
== Theorem of the month ==
=== Leibniz' differentiation rule ===
+
=== Counting theorem for algebraic numbers ===
  
For <math>f: {}^{(\omega)}\mathbb{K}^{n+1} \rightarrow {}^{(\omega)}\mathbb{K}, a, b: {}^{(\omega)}\mathbb{K}^{n} \rightarrow {}^{(\omega)}\mathbb{K}, \curvearrowright B x := {(s, {x}_{2}, ..., {x}_{n})}^{T}</math>, and <math>s \in {}^{(\omega)}\mathbb{K} \setminus \{{x}_{1}\}</math>, choosing <math>\curvearrowright D a(x) = a(\curvearrowright B x)</math> and <math>\curvearrowright D b(x) = b(\curvearrowright B x)</math>, it holds that<div style="text-align:center;"><math>\frac{\partial }{\partial {{x}_{1}}}\left( \int\limits_{a(x)}^{b(x)}{f(x,t)dDt} \right)=\int\limits_{a(x)}^{b(x)}{\frac{\partial f(x,t)}{\partial {{x}_{1}}}dDt}+\frac{\partial b(x)}{\partial {{x}_{1}}}f(\curvearrowright Bx,b(x))-\frac{\partial a(x)}{\partial {{x}_{1}}}f(\curvearrowright Bx,a(x)).</math></div>
+
The number <math>\mathbb{A}(m, n)</math> of algebraic numbers of polynomial or series degree <math>m</math> and thus in general for the Riemann zeta function <math>\zeta</math> asymptotically satisfies the equation <math>\mathbb{A}(m, n) = \widetilde{\zeta(\grave{m})}\,z(m){{(2n+1)}^{m}}\left( n+\mathcal{O}({_e}n) \right)</math>, where <math>z(m)</math> is the average number of zeros of a polynomial or series.
  
 
==== Proof: ====
 
==== Proof: ====
<div style="text-align:center;"><math>\begin{aligned}\frac{\partial }{\partial {{x}_{1}}}\left( \int\limits_{a(x)}^{b(x)}{f(x,t)dDt} \right) &amp;={\left( \int\limits_{a(\curvearrowright Bx)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t)dDt}-\int\limits_{a(x)}^{b(x)}{f(x,t)dDt} \right)}/{\partial {{x}_{1}}}\;={\left( \int\limits_{a(x)}^{b(x)}{(f(\curvearrowright Bx,t)-f(x,t))dDt}+\int\limits_{b(x)}^{b(\curvearrowright Bx)}{f(\curvearrowright Bx,t)dDt}-\int\limits_{a(x)}^{a(\curvearrowright Bx)}{f(\curvearrowright Bx,t)dDt} \right)}/{\partial {{x}_{1}}}\; \\ &amp;=\int\limits_{a(x)}^{b(x)}{\frac{\partial f(x,t)}{\partial {{x}_{1}}}dDt}+\frac{\partial b(x)}{\partial {{x}_{1}}}f(\curvearrowright Bx,b(x))-\frac{\partial a(x)}{\partial {{x}_{1}}}f(\curvearrowright Bx,a(x)).\square\end{aligned}</math></div>
+
The case <math>m = 1</math> requires by <ref name="Scheid">[[w:Harald Scheid|<span class="wikipedia">Scheid, Harald</span>]]: ''Zahlentheorie'' : 1st Ed.; 1991; Bibliographisches Institut; Mannheim; ISBN 9783411148417, p. 323.</ref> the error term <math>\mathcal{O}({_e}n n)</math> and represents the number <math>4\sum\limits_{k=1}^{n}{\varphi (k)}-1</math> by the <math>\varphi</math>-function. For <math>m > 1</math>, the divisibility conditions neither change the error term <math>\mathcal{O}({_e}n)</math> nor the leading term. Polynomials or series such that <math>\text{gcd}({a}_{0}, {a}_{1}, ..., {a}_{m}) \ne 1</math> are excluded by <math>1/\zeta(\grave{m})</math>: The latter is given by taking the product over the prime numbers <math>p</math> of all <math>(1 - {p}^{-\grave{m}})</math> absorbing here multiples of <math>p</math> and representing sums of geometric series.<math>\square</math>
  
 
== Recommended reading ==
 
== Recommended reading ==
  
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 +
 +
== References ==
 +
<references />
  
 
[[de:Hauptseite]]
 
[[de:Hauptseite]]

Revision as of 23:23, 30 June 2022

Welcome to MWiki

Theorem of the month

Counting theorem for algebraic numbers

The number [math]\displaystyle{ \mathbb{A}(m, n) }[/math] of algebraic numbers of polynomial or series degree [math]\displaystyle{ m }[/math] and thus in general for the Riemann zeta function [math]\displaystyle{ \zeta }[/math] asymptotically satisfies the equation [math]\displaystyle{ \mathbb{A}(m, n) = \widetilde{\zeta(\grave{m})}\,z(m){{(2n+1)}^{m}}\left( n+\mathcal{O}({_e}n) \right) }[/math], where [math]\displaystyle{ z(m) }[/math] is the average number of zeros of a polynomial or series.

Proof:

The case [math]\displaystyle{ m = 1 }[/math] requires by [1] the error term [math]\displaystyle{ \mathcal{O}({_e}n n) }[/math] and represents the number [math]\displaystyle{ 4\sum\limits_{k=1}^{n}{\varphi (k)}-1 }[/math] by the [math]\displaystyle{ \varphi }[/math]-function. For [math]\displaystyle{ m \gt 1 }[/math], the divisibility conditions neither change the error term [math]\displaystyle{ \mathcal{O}({_e}n) }[/math] nor the leading term. Polynomials or series such that [math]\displaystyle{ \text{gcd}({a}_{0}, {a}_{1}, ..., {a}_{m}) \ne 1 }[/math] are excluded by [math]\displaystyle{ 1/\zeta(\grave{m}) }[/math]: The latter is given by taking the product over the prime numbers [math]\displaystyle{ p }[/math] of all [math]\displaystyle{ (1 - {p}^{-\grave{m}}) }[/math] absorbing here multiples of [math]\displaystyle{ p }[/math] and representing sums of geometric series.[math]\displaystyle{ \square }[/math]

Recommended reading

Nonstandard Mathematics

References

  1. Scheid, Harald: Zahlentheorie : 1st Ed.; 1991; Bibliographisches Institut; Mannheim; ISBN 9783411148417, p. 323.