Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Greatest-prime Criterion and Transcendence of Euler's Constant)
(Counting theorem for algebraic numbers)
(33 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
= Welcome to MWiki =
 
= Welcome to MWiki =
== Theorems of the month ==
+
== Theorem of the month ==
=== Greatest-prime Criterion ===
+
=== Counting theorem for algebraic numbers ===
  
If a real number may be represented as an irreducible fraction <math>\widehat{ap}b \pm \hat{s}t</math>, where <math>a, b, s</math>, and <math>t</math> are natural numbers, <math>abst \ne 0</math>, <math>a + s &gt; 2</math>, and the (second-)greatest prime number <math>p \in {}^{\omega }\mathbb{P}, p \nmid b</math> and <math>p \nmid s</math>, then <math>r</math> is <math>\omega</math>-transcendental.
+
The number <math>\mathbb{A}(m, n)</math> of algebraic numbers of polynomial or series degree <math>m</math> and thus in general for the Riemann zeta function <math>\zeta</math> asymptotically satisfies the equation <math>\mathbb{A}(m, n) = \widetilde{\zeta(\grave{m})}\,z(m){{(2n+1)}^{m}}\left( n+\mathcal{O}({_e}n) \right)</math>, where <math>z(m)</math> is the average number of zeros of a polynomial or series.
  
 
==== Proof: ====
 
==== Proof: ====
The denominator <math>\widehat{ap s} (bs \pm apt)</math> is <math>\ge 2p \ge 2\omega - \mathcal{O}({_e}\omega\sqrt{\omega}) &gt; \omega</math> by the prime number theorem.<math>\square</math>
+
The case <math>m = 1</math> requires by <ref name="Scheid">[[w:Harald Scheid|<span class="wikipedia">Scheid, Harald</span>]]: ''Zahlentheorie'' : 1st Ed.; 1991; Bibliographisches Institut; Mannheim; ISBN 9783411148417, p. 323.</ref> the error term <math>\mathcal{O}({_e}n n)</math> and represents the number <math>4\sum\limits_{k=1}^{n}{\varphi (k)}-1</math> by the <math>\varphi</math>-function. For <math>m > 1</math>, the divisibility conditions neither change the error term <math>\mathcal{O}({_e}n)</math> nor the leading term. Polynomials or series such that <math>\text{gcd}({a}_{0}, {a}_{1}, ..., {a}_{m}) \ne 1</math> are excluded by <math>1/\zeta(\grave{m})</math>: The latter is given by taking the product over the prime numbers <math>p</math> of all <math>(1 - {p}^{-\grave{m}})</math> absorbing here multiples of <math>p</math> and representing sums of geometric series.<math>\square</math>
 
 
=== Transcendence of Euler's Constant ===
 
 
 
For <math>x \in {}^{\omega }{\mathbb{R}}</math>, let be <math>s(x) := \sum\limits_{n=1}^{\omega}{\hat{n}{{x}^{n}}}</math> and <math>\gamma := s(1) - {_e}\omega = \int\limits_{1}^{\omega}{\left( \widehat{\left\lfloor x \right\rfloor} - \hat{x} \right)dx}</math> Euler's constant, where rearranging shows <math>\gamma \in \; ]0, 1[</math>.
 
 
 
If <math>{_e}\omega = s(\hat{2})\;{_2}\omega</math> is accepted, <math>\gamma \in {}^{\omega }\mathbb{T}_{\mathbb{R}}</math> is true with a precision of <math>\mathcal{O}({2}^{-\omega}\hat{\omega}\;{_e}\omega)</math>.
 
 
 
==== Proof: ====
 
The (exact) integration of the geometric series yields <math>-{_e}(-\acute{x}) = s(x) + \mathcal{O}(\hat{\omega}{x}^{\grave{\omega}}/\acute{x}) + t(x)dx</math> for <math>x \in [-1, 1 - \hat{\nu}]</math> and <math>t(x) \in {}^{\omega }{\mathbb{R}}</math> such that <math>|t(x)| &lt; {\omega}</math>.
 
 
 
After applying Fermat's little theorem to the numerator of <math>\hat{p}(1 - 2^{-p}\,{_2}\omega)</math> for <math>p = \max\, {}^{\omega}\mathbb{P}</math>, the greatest-prime criterion yields the claim.<math>\square</math>
 
  
 
== Recommended reading ==
 
== Recommended reading ==
  
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 +
 +
== References ==
 +
<references />
  
 
[[de:Hauptseite]]
 
[[de:Hauptseite]]

Revision as of 22:23, 30 June 2022

Welcome to MWiki

Theorem of the month

Counting theorem for algebraic numbers

The number [math]\displaystyle{ \mathbb{A}(m, n) }[/math] of algebraic numbers of polynomial or series degree [math]\displaystyle{ m }[/math] and thus in general for the Riemann zeta function [math]\displaystyle{ \zeta }[/math] asymptotically satisfies the equation [math]\displaystyle{ \mathbb{A}(m, n) = \widetilde{\zeta(\grave{m})}\,z(m){{(2n+1)}^{m}}\left( n+\mathcal{O}({_e}n) \right) }[/math], where [math]\displaystyle{ z(m) }[/math] is the average number of zeros of a polynomial or series.

Proof:

The case [math]\displaystyle{ m = 1 }[/math] requires by [1] the error term [math]\displaystyle{ \mathcal{O}({_e}n n) }[/math] and represents the number [math]\displaystyle{ 4\sum\limits_{k=1}^{n}{\varphi (k)}-1 }[/math] by the [math]\displaystyle{ \varphi }[/math]-function. For [math]\displaystyle{ m \gt 1 }[/math], the divisibility conditions neither change the error term [math]\displaystyle{ \mathcal{O}({_e}n) }[/math] nor the leading term. Polynomials or series such that [math]\displaystyle{ \text{gcd}({a}_{0}, {a}_{1}, ..., {a}_{m}) \ne 1 }[/math] are excluded by [math]\displaystyle{ 1/\zeta(\grave{m}) }[/math]: The latter is given by taking the product over the prime numbers [math]\displaystyle{ p }[/math] of all [math]\displaystyle{ (1 - {p}^{-\grave{m}}) }[/math] absorbing here multiples of [math]\displaystyle{ p }[/math] and representing sums of geometric series.[math]\displaystyle{ \square }[/math]

Recommended reading

Nonstandard Mathematics

References

  1. Scheid, Harald: Zahlentheorie : 1st Ed.; 1991; Bibliographisches Institut; Mannheim; ISBN 9783411148417, p. 323.