Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Speedup theorems)
(Green's theorem)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
= Welcome to MWiki =
 
= Welcome to MWiki =
== Theorems of the month ==
+
== Theorem of the month ==
=== Definition ===
+
=== Green's theorem ===
  
Let <math>f_n^*(z) = f(\eta_nz)</math> <em>sisters</em> of the Taylor series <math>f(z) \in \mathcal{O}(D)</math> centred on 0 on the domain <math>D \subseteq {}^{\omega}\mathbb{C}</math> where <math>m, n \in {}^{\omega}\mathbb{N}^{*}</math> and <math>\eta_n^m := i^{2^{\lceil m/n \rceil}}</math>. Then let <math>\delta_n^*f = (f - f_n^*)/2</math> the <em>halved sister distances</em> of <math>f.</math> For <math>\mu_n^m := m!n!/(m + n)!</math>, <math>\mu</math> and <math>\eta</math> form an calculus, which can be resolved on the level of Taylor series and allows an easy and finite closed representation of integrals and derivatives.<math>\triangle</math>
+
Given neighbourhood relations <math>B \subseteq {D}^{2}</math> for some <math>h</math>-domain <math>D \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimal <math>h = |dBx|= |dBy| = |\curvearrowright B \gamma(t) - \gamma(t)| = \mathcal{O}({\hat{\omega}}^{m})</math>, sufficiently large <math>m \in \mathbb{N}^{*}, (x, y) \in D, {D}^{-} := \{(x, y) \in D : (x + h, y + h) \in D\}</math>, and a simply closed path <math>\gamma: [a, b[\rightarrow \partial D</math> followed anticlockwise, choosing <math>\curvearrowright B \gamma(t) = \gamma(\curvearrowright A t)</math> for <math>t \in [a, b[, A \subseteq {[a, b]}^{2}</math>, the following equation holds for sufficiently <math>\alpha</math>-continuous functions <math>u, v: D \rightarrow \mathbb{R}</math> with not necessarily continuous partial derivatives <math>\partial Bu/\partial Bx, \partial Bu/\partial By, \partial Bv/\partial Bx</math> and <math>\partial Bv/\partial By</math>:<div style="text-align:center;"><math>\int\limits_{\gamma }{(u\,dBx+v\,dBy)}=\int\limits_{(x,y)\in {{D}^{-}}}{\left( \frac{\partial Bv}{\partial Bx}-\frac{\partial Bu}{\partial By} \right)dB(x,y)}.</math></div>
 
 
=== Speedup theorem for integrals ===
 
 
 
The Taylor series (see below) <math>f(z) \in \mathcal{O}(D)</math> centred on 0 on <math>D \subseteq {}^{\omega}\mathbb{C}</math> gives for <math>\grave{m}, n \in {}^{\omega}\mathbb{N}^*</math><div style="text-align:center;"><math>\int\limits_0^z...\int\limits_0^{\zeta_2}{f(\zeta_1)\text{d}\zeta_1\;...\;\text{d}\zeta_n} = \widehat{n!} f(z\mu_n) z^n.\square</math></div>
 
 
 
=== Speedup theorem for derivatives ===
 
 
 
For <math>\mathbb{B}_{\hat{\nu}}(0) \subset  D \subseteq {}^{\omega}\mathbb{C},</math> the Taylor series<div style="text-align:center;"><math>f(z):=f(0) + \sum\limits_{m=1}^{\omega }{\widehat{m!}\,{{f}^{(m)}}(0){z^m}},</math></div><math>b_{\varepsilon n} := \hat{\varepsilon}\,\acute{n}! = 2^j, j, n \in {}^{\omega}\mathbb{N}^{*}, \varepsilon \in ]0, r^n[, {{d}_{\varepsilon k n}}:={{\varepsilon}^{{\hat{n}}}}{e}^{\hat{n}k\tau i}</math> and <math>f</math>'s radius of convergence <math>r \in {}^{\nu}{\mathbb{R}}_{&gt;0}</math> imply<div style="text-align:center;"><math>{{f}^{(n)}}(0)=b_{\varepsilon n}\sum\limits_{k=1}^{n}{\delta_n^* f({{d}_{\varepsilon k n}})}.</math></div>
 
  
 
==== Proof: ====
 
==== Proof: ====
Taylor's theorem<ref name="Remmert">[[w:Reinhold Remmert|<span class="wikipedia">Remmert, Reinhold</span>]]: ''Funktionentheorie 1'' : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.</ref> and the properties of the roots of unity.<math>\square</math>
+
Wlog the case <math>D := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial D \rightarrow {}^{(\omega)}\mathbb{R}</math> is proved, since the proof is analogous for each case rotated by <math>\iota</math>, and every <math>h</math>-domain is a union of such sets. It is simply shown that<div style="text-align:center;"><math>\int\limits_{\gamma }{u\,dBx}=-\int\limits_{(x,y)\in {{D}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}</math></div>since the other relation is given analogously. Since the regions of <math>\gamma</math> where <math>dBx = 0</math> do not contribute to the integral, for negligibly small <math>t := h(u(s, g(s)) - u(r, g(r)))</math>, it holds that<div style="text-align:center;"><math>-\int\limits_{\gamma }{u\,dBx}-t=\int\limits_{r}^{s}{u(x,g(x))dBx}-\int\limits_{r}^{s}{u(x,f(x))dBx}=\int\limits_{r}^{s}{\int\limits_{f(x)}^{g(x)}{\frac{\partial Bu}{\partial By}}dBydBx}=\int\limits_{(x,y)\in {{D}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}.\square</math></div>
 
 
== Reference ==
 
<references />
 
  
 
== Recommended reading ==
 
== Recommended reading ==

Revision as of 22:23, 30 April 2022

Welcome to MWiki

Theorem of the month

Green's theorem

Given neighbourhood relations [math]\displaystyle{ B \subseteq {D}^{2} }[/math] for some [math]\displaystyle{ h }[/math]-domain [math]\displaystyle{ D \subseteq {}^{(\omega)}\mathbb{R}^{2} }[/math], infinitesimal [math]\displaystyle{ h = |dBx|= |dBy| = |\curvearrowright B \gamma(t) - \gamma(t)| = \mathcal{O}({\hat{\omega}}^{m}) }[/math], sufficiently large [math]\displaystyle{ m \in \mathbb{N}^{*}, (x, y) \in D, {D}^{-} := \{(x, y) \in D : (x + h, y + h) \in D\} }[/math], and a simply closed path [math]\displaystyle{ \gamma: [a, b[\rightarrow \partial D }[/math] followed anticlockwise, choosing [math]\displaystyle{ \curvearrowright B \gamma(t) = \gamma(\curvearrowright A t) }[/math] for [math]\displaystyle{ t \in [a, b[, A \subseteq {[a, b]}^{2} }[/math], the following equation holds for sufficiently [math]\displaystyle{ \alpha }[/math]-continuous functions [math]\displaystyle{ u, v: D \rightarrow \mathbb{R} }[/math] with not necessarily continuous partial derivatives [math]\displaystyle{ \partial Bu/\partial Bx, \partial Bu/\partial By, \partial Bv/\partial Bx }[/math] and [math]\displaystyle{ \partial Bv/\partial By }[/math]:

[math]\displaystyle{ \int\limits_{\gamma }{(u\,dBx+v\,dBy)}=\int\limits_{(x,y)\in {{D}^{-}}}{\left( \frac{\partial Bv}{\partial Bx}-\frac{\partial Bu}{\partial By} \right)dB(x,y)}. }[/math]

Proof:

Wlog the case [math]\displaystyle{ D := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial D \rightarrow {}^{(\omega)}\mathbb{R} }[/math] is proved, since the proof is analogous for each case rotated by [math]\displaystyle{ \iota }[/math], and every [math]\displaystyle{ h }[/math]-domain is a union of such sets. It is simply shown that

[math]\displaystyle{ \int\limits_{\gamma }{u\,dBx}=-\int\limits_{(x,y)\in {{D}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)} }[/math]

since the other relation is given analogously. Since the regions of [math]\displaystyle{ \gamma }[/math] where [math]\displaystyle{ dBx = 0 }[/math] do not contribute to the integral, for negligibly small [math]\displaystyle{ t := h(u(s, g(s)) - u(r, g(r))) }[/math], it holds that

[math]\displaystyle{ -\int\limits_{\gamma }{u\,dBx}-t=\int\limits_{r}^{s}{u(x,g(x))dBx}-\int\limits_{r}^{s}{u(x,f(x))dBx}=\int\limits_{r}^{s}{\int\limits_{f(x)}^{g(x)}{\frac{\partial Bu}{\partial By}}dBydBx}=\int\limits_{(x,y)\in {{D}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}.\square }[/math]

Recommended reading

Nonstandard Mathematics