Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Prime number theorem)
(Centre Method)
(4 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
= Welcome to MWiki =
 
= Welcome to MWiki =
 
== Theorem of the month ==
 
== Theorem of the month ==
=== Prime number theorem ===
+
The centre method solves every solvable LP in <math>\mathcal{O}(\omega{\vartheta}^{2})</math>.
  
For <math>\pi(x) := |\{p \in {}^{\omega}{\mathbb{P}} : p \le x \in {}^{\omega}{\mathbb{R}}\}|</math> holds <math>\pi(\omega) = \widehat{{_e}\omega}\omega + \mathcal{O}({_e}\omega\sqrt{\omega})</math>.
+
== Proof and algorithm ==
 +
Let <math>z := \grave{m} + n</math> and <math>d \in [0, 1]</math> the density of <math>A</math>. First, normalise and scale <math>{b}^{T}y - {c}^{T}x \le 0, Ax \le b</math> as well as <math>{A}^{T}y \ge c</math>. Let <math>P_r := \{(x, y)^T \in {}^{\omega}\mathbb{R}_{\ge 0}^{z} : {b}^{T}y - {c}^{T}x \le r \in [0, \check{r}], Ax - b \le \underline{r}_m, c - {A}^{T}y \le \underline{r}_n\}</math> have the radius <math>\check{r} := s|\min \; \{b_1, ..., b_m, -c_1, ..., -c_n\}|</math> and the scaling factor <math>s \in [1, 2]</math>. It follows <math>\underline{0}_{z} \in \partial P_{\check{r}}</math>. By the strong duality theorem, the LP min <math>\{ r \in [0, \check{r}] : (x, y)^T \in P_r\}</math> solves the LPs max <math>\{{c}^{T}x : c \in {}^{\omega}\mathbb{R}^{n}, x \in {P}_{\ge 0}\}</math> and min <math>\{{b}^{T}y : y \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, {A}^{T}y \ge c\}</math>.
  
==== Proof: ====
 
In the sieve of Eratosthenes, the number of prime numbers decreases almost regularly. From intervals of fix length <math>y \in {}^{\omega}{\mathbb{R}_{&gt;0}}, \hat{2}y</math> set-2-tuples of prime numbers are formed such that the first interval has the unchanged representative prime number density and the second interval is empty, then the interval with the second most prime number density is followed by the second least one etc.
 
  
For induction basis <math>n = 2</math> resp. 3, the induction hypothesis is that the first interval contains <math>x_n/{_e}x_n</math> prime numbers for <math>n \in {}^{\omega}{\mathbb{N}_{\ge2}}</math> and arbitrary <math>x_4 \in [2, 4[</math>. Then the induction step from <math>x_n</math> to <math>x_n^2</math> by considering the prime gaps of prime <math>p\# /q + 1</math> for <math>p, q \in {}^{\omega}\mathbb{P}</math> proves that there are <math>\pi(x_n^2) = \pi(x_n) x_n/2</math> prime numbers only from <math>\pi(x_n) = x_n/{_e}x_n</math>. The average distance between the prime numbers is <math>{_e}x_n</math> and the maximal <math>x_n^2</math> to <math>x_n</math> behaves like <math>\omega</math> to <math>\sqrt{\omega}.\square</math>
+
Its solution is the geometric centre <math>g</math> of the polytope <math>P_0</math>. For <math>p_k^* := (\text{min}\,p_k + \text{max}\,p_k)/2</math> and <math>k = 1, ..., \grave{z}</math> approximate <math>g</math> by <math>p_0 := (x_0, y_0, r_0)^T</math> until <math>||\Delta p||_1</math> is sufficiently small. The solution <math>t^o(x^o, y^o, r^o)^T</math> of the two-dimensional LP min <math>\{ r \in [0, \check{r}] : t \in {}^{\omega}\mathbb{R}_{&gt; 0}, t(x_0, y_0)^T \in P_r\}</math> approximates <math>g</math> better and achieves <math>r \le \check{r}/\sqrt{\grave{z}}</math>. Repeat this for <math>t^o(x^o, y^o)^T</math> until <math>g \in P_0</math> is computed in <math>\mathcal{O}({}_z\check{r} {}_e\check{r}dmn)</math> if it exists. Numbers of length <math>\mathcal{O}({\omega})</math> can only be processed in <math>\mathcal{O}(\vartheta)</math> as is generally known.
  
== Recommended reading ==
 
  
 +
Solving all two-dimensional LPs <math>\text{min}_k r_k</math> by bisection methods for <math>r_k \in {}^{\omega}\mathbb{R}_{\ge 0}</math> and <math>k = 1, ..., z</math> in <math>\mathcal{O}({\vartheta}^2)</math> each time determines <math>q \in {}^{\omega}\mathbb{R}^k</math> where <math>q_k := \Delta p_k \Delta r_k/r</math> and <math>r := \text{min}_k \Delta r_k</math>. Let simplified <math>|\Delta p_1| = … = |\Delta p_{z}|</math>. Here min <math>r_z</math> for <math>p^* := p + wq</math> and <math>w \in {}^{\omega}\mathbb{R}_{\ge 0}</math> would be also to solve. If <math>\text{min}_k \Delta r_k r = 0</math> follows, stop, otherwise repeat until min <math>r = 0</math> or min <math>r &gt; 0</math> is sure. If necessary, constraints are temporarily relaxed by the same small modulus.<math>\square</math>
 +
 +
== Recommended readings ==
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
  
 
[[de:Hauptseite]]
 
[[de:Hauptseite]]

Revision as of 02:55, 1 January 2022

Welcome to MWiki

Theorem of the month

The centre method solves every solvable LP in [math]\displaystyle{ \mathcal{O}(\omega{\vartheta}^{2}) }[/math].

Proof and algorithm

Let [math]\displaystyle{ z := \grave{m} + n }[/math] and [math]\displaystyle{ d \in [0, 1] }[/math] the density of [math]\displaystyle{ A }[/math]. First, normalise and scale [math]\displaystyle{ {b}^{T}y - {c}^{T}x \le 0, Ax \le b }[/math] as well as [math]\displaystyle{ {A}^{T}y \ge c }[/math]. Let [math]\displaystyle{ P_r := \{(x, y)^T \in {}^{\omega}\mathbb{R}_{\ge 0}^{z} : {b}^{T}y - {c}^{T}x \le r \in [0, \check{r}], Ax - b \le \underline{r}_m, c - {A}^{T}y \le \underline{r}_n\} }[/math] have the radius [math]\displaystyle{ \check{r} := s|\min \; \{b_1, ..., b_m, -c_1, ..., -c_n\}| }[/math] and the scaling factor [math]\displaystyle{ s \in [1, 2] }[/math]. It follows [math]\displaystyle{ \underline{0}_{z} \in \partial P_{\check{r}} }[/math]. By the strong duality theorem, the LP min [math]\displaystyle{ \{ r \in [0, \check{r}] : (x, y)^T \in P_r\} }[/math] solves the LPs max [math]\displaystyle{ \{{c}^{T}x : c \in {}^{\omega}\mathbb{R}^{n}, x \in {P}_{\ge 0}\} }[/math] and min [math]\displaystyle{ \{{b}^{T}y : y \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, {A}^{T}y \ge c\} }[/math].


Its solution is the geometric centre [math]\displaystyle{ g }[/math] of the polytope [math]\displaystyle{ P_0 }[/math]. For [math]\displaystyle{ p_k^* := (\text{min}\,p_k + \text{max}\,p_k)/2 }[/math] and [math]\displaystyle{ k = 1, ..., \grave{z} }[/math] approximate [math]\displaystyle{ g }[/math] by [math]\displaystyle{ p_0 := (x_0, y_0, r_0)^T }[/math] until [math]\displaystyle{ ||\Delta p||_1 }[/math] is sufficiently small. The solution [math]\displaystyle{ t^o(x^o, y^o, r^o)^T }[/math] of the two-dimensional LP min [math]\displaystyle{ \{ r \in [0, \check{r}] : t \in {}^{\omega}\mathbb{R}_{> 0}, t(x_0, y_0)^T \in P_r\} }[/math] approximates [math]\displaystyle{ g }[/math] better and achieves [math]\displaystyle{ r \le \check{r}/\sqrt{\grave{z}} }[/math]. Repeat this for [math]\displaystyle{ t^o(x^o, y^o)^T }[/math] until [math]\displaystyle{ g \in P_0 }[/math] is computed in [math]\displaystyle{ \mathcal{O}({}_z\check{r} {}_e\check{r}dmn) }[/math] if it exists. Numbers of length [math]\displaystyle{ \mathcal{O}({\omega}) }[/math] can only be processed in [math]\displaystyle{ \mathcal{O}(\vartheta) }[/math] as is generally known.


Solving all two-dimensional LPs [math]\displaystyle{ \text{min}_k r_k }[/math] by bisection methods for [math]\displaystyle{ r_k \in {}^{\omega}\mathbb{R}_{\ge 0} }[/math] and [math]\displaystyle{ k = 1, ..., z }[/math] in [math]\displaystyle{ \mathcal{O}({\vartheta}^2) }[/math] each time determines [math]\displaystyle{ q \in {}^{\omega}\mathbb{R}^k }[/math] where [math]\displaystyle{ q_k := \Delta p_k \Delta r_k/r }[/math] and [math]\displaystyle{ r := \text{min}_k \Delta r_k }[/math]. Let simplified [math]\displaystyle{ |\Delta p_1| = … = |\Delta p_{z}| }[/math]. Here min [math]\displaystyle{ r_z }[/math] for [math]\displaystyle{ p^* := p + wq }[/math] and [math]\displaystyle{ w \in {}^{\omega}\mathbb{R}_{\ge 0} }[/math] would be also to solve. If [math]\displaystyle{ \text{min}_k \Delta r_k r = 0 }[/math] follows, stop, otherwise repeat until min [math]\displaystyle{ r = 0 }[/math] or min [math]\displaystyle{ r > 0 }[/math] is sure. If necessary, constraints are temporarily relaxed by the same small modulus.[math]\displaystyle{ \square }[/math]

Recommended readings

Nonstandard Mathematics