Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
m (Protected "Main Page": Only discussion may be changed ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite)))
(Universal multistep theorem)
(42 intermediate revisions by the same user not shown)
Line 1: Line 1:
First fundamental theorem of exact differential and integral calculus for line integrals: The function <math>F(z)=\int\limits_{\gamma }{f(\zeta )dB\zeta }</math> where <math>\gamma: [d, x[C \rightarrow A \subseteq {}^{(\omega)}\mathbb{K}, C \subseteq \mathbb{R}, f: A \rightarrow {}^{(\omega)}\mathbb{K}, d \in [a, b[C</math>, and choosing <math>\curvearrowright B \gamma(x) = \gamma(\curvearrowright D x)</math> is exactly <math>B</math>-differentiable, and for all <math>x \in [a, b[C</math> and <math>z = \gamma(x)</math>
+
__NOTOC__
 +
= Welcome to MWiki =
 +
== Theorem of the month ==
  
<center><math>F' \curvearrowright B(z) = f(z).</math></center>
+
=== Universal multistep theorem ===
  
 +
For <math>n \in {}^{\nu}\mathbb{N}_{\le p}, k, m, p \in {}^{\nu}\mathbb{N}^{*}, d_{\curvearrowright B} x \in\, ]0, 1[, x \in [a, b] \subseteq {}^{\omega}\mathbb{R}, y : [a, b] \rightarrow {}^{\omega}\mathbb{R}^q, f : [a, b] \times {}^{\omega}\mathbb{R}^{q \times n} \rightarrow {}^{\omega}\mathbb{R}^q, g_k(\curvearrowright B x) := g_{\acute{k}}(x)</math> and <math>g_0(a) = f((\curvearrowleft B)a, y_0, ... , y_{\acute{n}})</math>, the Taylor series of the initial value problem <math>y^\prime(x) = f(x, y((\curvearrowright B)^0 x), ... , y((\curvearrowright B)^{\acute{n}} x))</math> of order <math>n</math> implies <div style="text-align:center;"><math>y(\curvearrowright B x) = y(x) - d_{\curvearrowright B}x\sum\limits_{k=1}^{p}{i^{2k} g_{p-k}((\curvearrowright B) x)\sum\limits_{m=k}^{p}{\widehat{m!}\binom{\acute{m}}{\acute{k}}}} + \mathcal{O}((d_{\curvearrowright B} x)^{\grave{p}}).\square</math></div>
  
Proof: <math>dB(F(z))=\int\limits_{t\in [d,x]C}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt}-\int\limits_{t\in [d,x[C}{f(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt}=\int\limits_{x}{f(\gamma (t))\frac{\gamma (\curvearrowright Dt)-\gamma (t)}{\curvearrowright Dt-t}dDt}=f(\gamma (x)){{{\gamma }'}_{\curvearrowright }}D(x)dDx=\,f(\gamma (x))(\curvearrowright B\gamma (x)-\gamma (x))=f(z)dBz.\square</math>
+
=== Goldbach’s theorem ===
  
Second fundamental theorem of exact differential and integral calculus for line integrals: According to the conditions from above, we have with <math>\gamma: [a, b[C \rightarrow {}^{(\omega)}\mathbb{K}</math> that
+
Every even whole number greater than 2 is the sum of two primes.
  
 +
==== Proof: ====
 +
Induction over all prime gaps until the maximally possible one each time.<math>\square</math>
  
<center><math>F(\gamma (b))-F(\gamma (a))=\int\limits_{\gamma }{{{{{F}'}}_{\curvearrowright }}B(\zeta )dB\zeta }.</math></center>
+
=== Foundation theorem ===
  
 +
Only the postulation of the axiom of foundation that every nonempty subset <math>X \subseteq Y</math> contains an element <math>x_0</math> such that <math>X</math> und <math>x_0</math> are disjoint guarantees cycle freedom.
  
Proof: <math>F(\gamma (b))-F(\gamma (a))=\sum\limits_{t\in [a,b[C}{F(\curvearrowright B\,\gamma (t))}-F(\gamma (t))=\sum\limits_{t\in [a,b[C}{{{{{F}'}}_{\curvearrowright }}B(\gamma (t))(\curvearrowright B\,\gamma (t)-\gamma (t))}=\int\limits_{t\in [a,b[C}{{{{{F}'}}_{\curvearrowright }}B(\gamma (t)){{{{\gamma }'}}_{\curvearrowright }}D(t)dDt}=\int\limits_{\gamma }{{{{{F}'}}_{\curvearrowright }}B(\zeta )dB\zeta }.\square</math>
+
==== Proof: ====
 +
Set <math>X := \{x_m : x_0 := \{\emptyset\}, x_{\omega} := \{x_1\}</math> and <math>x_{\acute{n}} := \{x_n\}</math> for <math>m \in {}^{\omega}\mathbb{N}</math> and <math>n \in {}^{\omega}\mathbb{N}_{\ge 2}\}</math> .<math>\square</math>
 +
== Recommended reading ==
 +
 
 +
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
  
 
[[de:Hauptseite]]
 
[[de:Hauptseite]]

Revision as of 02:05, 1 June 2021

Welcome to MWiki

Theorem of the month

Universal multistep theorem

For [math]\displaystyle{ n \in {}^{\nu}\mathbb{N}_{\le p}, k, m, p \in {}^{\nu}\mathbb{N}^{*}, d_{\curvearrowright B} x \in\, ]0, 1[, x \in [a, b] \subseteq {}^{\omega}\mathbb{R}, y : [a, b] \rightarrow {}^{\omega}\mathbb{R}^q, f : [a, b] \times {}^{\omega}\mathbb{R}^{q \times n} \rightarrow {}^{\omega}\mathbb{R}^q, g_k(\curvearrowright B x) := g_{\acute{k}}(x) }[/math] and [math]\displaystyle{ g_0(a) = f((\curvearrowleft B)a, y_0, ... , y_{\acute{n}}) }[/math], the Taylor series of the initial value problem [math]\displaystyle{ y^\prime(x) = f(x, y((\curvearrowright B)^0 x), ... , y((\curvearrowright B)^{\acute{n}} x)) }[/math] of order [math]\displaystyle{ n }[/math] implies

[math]\displaystyle{ y(\curvearrowright B x) = y(x) - d_{\curvearrowright B}x\sum\limits_{k=1}^{p}{i^{2k} g_{p-k}((\curvearrowright B) x)\sum\limits_{m=k}^{p}{\widehat{m!}\binom{\acute{m}}{\acute{k}}}} + \mathcal{O}((d_{\curvearrowright B} x)^{\grave{p}}).\square }[/math]

Goldbach’s theorem

Every even whole number greater than 2 is the sum of two primes.

Proof:

Induction over all prime gaps until the maximally possible one each time.[math]\displaystyle{ \square }[/math]

Foundation theorem

Only the postulation of the axiom of foundation that every nonempty subset [math]\displaystyle{ X \subseteq Y }[/math] contains an element [math]\displaystyle{ x_0 }[/math] such that [math]\displaystyle{ X }[/math] und [math]\displaystyle{ x_0 }[/math] are disjoint guarantees cycle freedom.

Proof:

Set [math]\displaystyle{ X := \{x_m : x_0 := \{\emptyset\}, x_{\omega} := \{x_1\} }[/math] and [math]\displaystyle{ x_{\acute{n}} := \{x_n\} }[/math] for [math]\displaystyle{ m \in {}^{\omega}\mathbb{N} }[/math] and [math]\displaystyle{ n \in {}^{\omega}\mathbb{N}_{\ge 2}\} }[/math] .[math]\displaystyle{ \square }[/math]

Recommended reading

Nonstandard Mathematics