Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Green's theorem)
Line 2: Line 2:
 
= Welcome to MWiki =
 
= Welcome to MWiki =
 
== Theorem of the month ==
 
== Theorem of the month ==
=== Green's theorem ===
+
=== Fermat's Last Theorem ===
  
Given neighbourhood relations <math>B \subseteq {A}^{2}</math> for some simply connected <math>h</math>-set <math>A \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimal <math>h = |dBx|= |dBy| = |\curvearrowright B \gamma(t) - \gamma(t)| = \mathcal{O}({\hat{\omega}}^{m})</math>, sufficiently large <math>m \in \mathbb{N}^{*}, (x, y) \in A, {A}^{-} := \{(x, y) \in A : (x + h, y + h) \in A\}</math>, and a simply closed path <math>\gamma: [a, b[\rightarrow \partial A</math> followed anticlockwise, choosing <math>\curvearrowright B \gamma(t) = \gamma(\curvearrowright D t)</math> for <math>t \in [a, b[, D \subseteq {[a, b]}^{2}</math>, the following equation holds for sufficiently <math>\alpha</math>-continuous functions <math>u, v: A \rightarrow \mathbb{R}</math> with not necessarily continuous partial derivatives <math>\partial Bu/\partial Bx, \partial Bu/\partial By, \partial Bv/\partial Bx</math> and <math>\partial Bv/\partial By</math>:<div style="text-align:center;"><math>\int\limits_{\gamma }{(u\,dBx+v\,dBy)}=\int\limits_{(x,y)\in {{A}^{-}}}{\left( \frac{\partial Bv}{\partial Bx}-\frac{\partial Bu}{\partial By} \right)dB(x,y)}.</math></div>
+
For all <math>p \in {}^{\omega }{\mathbb{P}_{\ge 3}}</math> and <math>x, y, z \in {}^{\omega }{\mathbb{N}^{*}}</math>, always <math>x^p + y^p \ne z^p</math> holds and thus for all <math>m \in {}^{\omega }{\mathbb{N}_{\ge 3}}</math> instead of <math>p</math>.
  
 
==== Proof: ====
 
==== Proof: ====
Wlog the case <math>A := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial A \rightarrow {}^{(\omega)}\mathbb{R}</math> is proved, since the proof is analogous for each case rotated by <math>\iota</math>, and every simply connected <math>h</math>-set is a union of such sets. It is simply shown that<div style="text-align:center;"><math>\int\limits_{\gamma }{u\,dBx}=-\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}</math></div>since the other relation is given analogously. Since the regions of <math>\gamma</math> where <math>dBx = 0</math> do not contribute to the integral, for negligibly small <math>t := h(u(s, g(s)) - u(r, g(r)))</math>, it holds that<div style="text-align:center;"><math>-\int\limits_{\gamma }{u\,dBx}-t=\int\limits_{r}^{s}{u(x,g(x))dBx}-\int\limits_{r}^{s}{u(x,f(x))dBx}=\int\limits_{r}^{s}{\int\limits_{f(x)}^{g(x)}{\frac{\partial Bu}{\partial By}}dBydBx}=\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}.\square</math></div>
+
Because of [[w:Fermat's little theorem|<span class="wikipedia">Fermat's little theorem</span>]], rewritten, <math>f_{akp}(n) := (2n + a - kp)^p - n^p - (n + a)^p \ne 0</math> is to show for <math>a, k, n \in {}^{\omega }{\mathbb{N}^{*}}</math> where <math>kp &lt; n</math>.
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:100%; overflow:auto;">
 +
<div style="font-weight:bold;line-height:1.6;">Proof details</div>
 +
<div class="mw-collapsible-content">From <math>x := n, y:= n + a</math> and <math>z := 2n + a + d</math> where <math>d \in {}^{\omega }{\mathbb{N}^{*}}</math>, it follows due to <math>z^p \equiv y, y^p \equiv y</math> and <math>z^p \equiv z</math> first <math>d \equiv 0 \mod p</math>, then <math>d = \pm kp</math>. Since <math>x + y = 2n + a &gt; z</math> is required, <math>f_{akp}(n)</math> is chosen properly.</div></div>
 +
 
 +
[[w:Mathematical induction|<span class="wikipedia">Induction</span>]] for <math>n</math> implies the claim due to the case <math>m = 4</math><ref name="Ribenboim">[[w:Paulo Ribenboim|<span class="wikipedia">Ribenboim, Paulo</span>]]: ''Thirteen Lectures on Fermat's Last Theorem'' : 1979; Springer; New York; ISBN 9780387904320, p. 35 - 38.</ref> and <math>y &gt; x &gt; p</math><ref name="loccit">loc. cit., p. 226.</ref>:
 +
 
 +
'''Induction basis''' <math>(n \le p): f_{akp}(n) \ne 0</math> for all <math>a, k</math> and <math>p</math>. Let <math>r \in {}^{\omega }{\mathbb{N}_{&lt; p}}</math>.
 +
 
 +
'''Induction step''' <math>\,(n = q + r \; \rightarrow \; n^{*} = n + p):</math> Let <math>f_{akp}(n^{*}) \ge 0</math>, but <math>f_{akp}(n) &lt; 0</math>, since <math>f_{akp}(n)</math> is [[w:Monotonic function|<span class="wikipedia">strictly monotonically increasing</span>]] and otherwise nothing to prove.
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:100%; overflow:auto;">
 +
<div style="font-weight:bold;line-height:1.6;">Proof details</div>
 +
<div class="mw-collapsible-content">The strict monotonicity follows from (continuously) differentiating by <math>n</math> such that <math>f_{akp}(n)' = p(2(2n + a - kp)^{p - 1} - n^{p - 1} - (n + a)^{p - 1}) &gt; 0</math>.</div></div>
 +
 
 +
It holds <math>f_{akp}(n^{*}) = (\int_0^{n^{*}}{f_{akp}(v)}dv)' \ne 0</math>, since <math>(n^{*})^{p + 1} + (n^{*} + a)^{p + 1}</math> does not divide <math>((n^{*})^p + (n^{*} + a)^p)^2</math> after separating the positive factor as [[w:Polynomial long division|<span class="wikipedia">polynomial division</span>]] shows.<math>\square</math>
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:100%; overflow:auto;">
 +
<div style="font-weight:bold;line-height:1.6;">Proof details</div>
 +
<div class="mw-collapsible-content"><math>\int_0^{n^{*}}{f_{akp}(v)}dv = ((2n^{*} + a - kp)^{p + 1} / 2 - (n^{*})^{p + 1} - (n^{*} + a)^{p + 1})/(p + 1) + t = ((2n^{*} + a - kp)^{(p + 1)/2} \pm \sqrt{2(n^{*})^{p + 1} + 2(n^{*} + a)^{p + 1}})^2/(2p + 2) + t</math> for <math>t \in {}^{\omega}{\mathbb{Q}}</math> where the third binomial formula <math>r^2 - s^2 = (r \pm s)^2 := (r + s)(r - s)</math> was used. After separating the negligible factor <math>\hat{2}((2n^{*} + a - kp)^{(p + 1)/2} + \sqrt{2(n^{*})^{p + 1} + 2(n^{*} + a)^{p + 1}})/(p + 1)</math>, the derivative is just <math>(\hat{2}(2n^{*} + a - kp)^{(p - 1)/2} - \hat{2}((n^{*})^p + (n^{*} + a)^p)/\sqrt{2(n^{*})^{p + 1} + 2(n^{*} + a)^{p + 1}})</math>. After squaring the terms, the polynomial division gives <math>(n^{*})^{p - 1} + (n^{*} + a)^{p - 1} + a^2(n^{*})^{p - 1}(n^{*} + a)^{p - 1}/((n^{*})^{p + 1} + (n^{*} + a)^{p + 1})</math> as recalculating by multiplication confirms.</div></div>
  
 
== Recommended reading ==
 
== Recommended reading ==
  
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 +
 +
== References ==
 +
<references />
  
 
[[de:Hauptseite]]
 
[[de:Hauptseite]]

Revision as of 07:06, 6 May 2020

Welcome to MWiki

Theorem of the month

Fermat's Last Theorem

For all [math]\displaystyle{ p \in {}^{\omega }{\mathbb{P}_{\ge 3}} }[/math] and [math]\displaystyle{ x, y, z \in {}^{\omega }{\mathbb{N}^{*}} }[/math], always [math]\displaystyle{ x^p + y^p \ne z^p }[/math] holds and thus for all [math]\displaystyle{ m \in {}^{\omega }{\mathbb{N}_{\ge 3}} }[/math] instead of [math]\displaystyle{ p }[/math].

Proof:

Because of Fermat's little theorem, rewritten, [math]\displaystyle{ f_{akp}(n) := (2n + a - kp)^p - n^p - (n + a)^p \ne 0 }[/math] is to show for [math]\displaystyle{ a, k, n \in {}^{\omega }{\mathbb{N}^{*}} }[/math] where [math]\displaystyle{ kp < n }[/math].

Proof details
From [math]\displaystyle{ x := n, y:= n + a }[/math] and [math]\displaystyle{ z := 2n + a + d }[/math] where [math]\displaystyle{ d \in {}^{\omega }{\mathbb{N}^{*}} }[/math], it follows due to [math]\displaystyle{ z^p \equiv y, y^p \equiv y }[/math] and [math]\displaystyle{ z^p \equiv z }[/math] first [math]\displaystyle{ d \equiv 0 \mod p }[/math], then [math]\displaystyle{ d = \pm kp }[/math]. Since [math]\displaystyle{ x + y = 2n + a > z }[/math] is required, [math]\displaystyle{ f_{akp}(n) }[/math] is chosen properly.

Induction for [math]\displaystyle{ n }[/math] implies the claim due to the case [math]\displaystyle{ m = 4 }[/math][1] and [math]\displaystyle{ y > x > p }[/math][2]:

Induction basis [math]\displaystyle{ (n \le p): f_{akp}(n) \ne 0 }[/math] for all [math]\displaystyle{ a, k }[/math] and [math]\displaystyle{ p }[/math]. Let [math]\displaystyle{ r \in {}^{\omega }{\mathbb{N}_{< p}} }[/math].

Induction step [math]\displaystyle{ \,(n = q + r \; \rightarrow \; n^{*} = n + p): }[/math] Let [math]\displaystyle{ f_{akp}(n^{*}) \ge 0 }[/math], but [math]\displaystyle{ f_{akp}(n) < 0 }[/math], since [math]\displaystyle{ f_{akp}(n) }[/math] is strictly monotonically increasing and otherwise nothing to prove.

Proof details
The strict monotonicity follows from (continuously) differentiating by [math]\displaystyle{ n }[/math] such that [math]\displaystyle{ f_{akp}(n)' = p(2(2n + a - kp)^{p - 1} - n^{p - 1} - (n + a)^{p - 1}) > 0 }[/math].

It holds [math]\displaystyle{ f_{akp}(n^{*}) = (\int_0^{n^{*}}{f_{akp}(v)}dv)' \ne 0 }[/math], since [math]\displaystyle{ (n^{*})^{p + 1} + (n^{*} + a)^{p + 1} }[/math] does not divide [math]\displaystyle{ ((n^{*})^p + (n^{*} + a)^p)^2 }[/math] after separating the positive factor as polynomial division shows.[math]\displaystyle{ \square }[/math]

Proof details
[math]\displaystyle{ \int_0^{n^{*}}{f_{akp}(v)}dv = ((2n^{*} + a - kp)^{p + 1} / 2 - (n^{*})^{p + 1} - (n^{*} + a)^{p + 1})/(p + 1) + t = ((2n^{*} + a - kp)^{(p + 1)/2} \pm \sqrt{2(n^{*})^{p + 1} + 2(n^{*} + a)^{p + 1}})^2/(2p + 2) + t }[/math] for [math]\displaystyle{ t \in {}^{\omega}{\mathbb{Q}} }[/math] where the third binomial formula [math]\displaystyle{ r^2 - s^2 = (r \pm s)^2 := (r + s)(r - s) }[/math] was used. After separating the negligible factor [math]\displaystyle{ \hat{2}((2n^{*} + a - kp)^{(p + 1)/2} + \sqrt{2(n^{*})^{p + 1} + 2(n^{*} + a)^{p + 1}})/(p + 1) }[/math], the derivative is just [math]\displaystyle{ (\hat{2}(2n^{*} + a - kp)^{(p - 1)/2} - \hat{2}((n^{*})^p + (n^{*} + a)^p)/\sqrt{2(n^{*})^{p + 1} + 2(n^{*} + a)^{p + 1}}) }[/math]. After squaring the terms, the polynomial division gives [math]\displaystyle{ (n^{*})^{p - 1} + (n^{*} + a)^{p - 1} + a^2(n^{*})^{p - 1}(n^{*} + a)^{p - 1}/((n^{*})^{p + 1} + (n^{*} + a)^{p + 1}) }[/math] as recalculating by multiplication confirms.

Recommended reading

Nonstandard Mathematics

References

  1. Ribenboim, Paulo: Thirteen Lectures on Fermat's Last Theorem : 1979; Springer; New York; ISBN 9780387904320, p. 35 - 38.
  2. loc. cit., p. 226.