Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
m (Intex method)
(Prime number and Gelfond-Schneider theorem)
 
(16 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
= Welcome to MWiki =
 
= Welcome to MWiki =
== Theorem of the month ==
+
== Theorems of the month ==
Intex methods solve almost every solvable LP with <em>int</em>er-/<em>ex</em>trapolations in <math>\mathcal{O}({\vartheta}^3)</math>.
+
=== Prime number theorem ===
  
== Proof and algorithm ==
+
For <math>\pi(x) := |\{p \in {\mathbb{P}_{\le x}} : x \in {}^{\omega}{\mathbb{R}}\}|</math>, it holds that <math>\pi(\omega) = \widetilde{{_e}\omega}\omega + \mathcal{O}({_\epsilon}\omega\;{\omega}^{\tilde{2}})</math>.
Let <math>z := m + n</math> and <math>d \in [0, 1]</math> the density of <math>A</math>. First, normalise and scale <math>{b}^{T}y - {c}^{T}x \le 0, Ax \le b</math> as well as <math>{A}^{T}y \ge c</math>. Let <math>P_r := \{(x, y)^T \in {}^{\omega}\mathbb{R}_{\ge 0}^{z} : {b}^{T}y - {c}^{T}x \le r \in [0, \rho], Ax - b \le r{\upharpoonright}_m,</math> <math>c - {A}^{T}y \le r{\upharpoonright}_n\}</math> have the radius <math>\rho := s|\min \; \{b_1, ..., b_m, -c_1, ..., -c_n\}|</math> and the scaling factor <math>s \in [1, 2]</math>.
 
  
 +
==== Proof: ====
 +
From intervals of fix length <math>y \in {}^{\omega}{\mathbb{R}_{>0}}, \check{y}</math> set-2-tuples of prime numbers are formed such that the first interval has the unchanged representative prime number density and the second interval is empty, then the interval with the second most prime number density is followed by the second least one etc. The Stirling formula suggests the prime gap <math>n = {\epsilon}^{\sigma} = \mathcal{O}({_\epsilon}(n!))</math>.
  
It follows <math>0{\upharpoonright}_z \in \partial P_{\rho}</math>. By the strong duality theorem, LP min <math>\{ r \in [0, \rho] : (x, y)^T \in P_r\}</math> solves LPs max <math>\{{c}^{T}x : c \in {}^{\omega}\mathbb{R}^{n}, x \in {P}_{\ge 0}\}</math> and min <math>\{{b}^{T}y : y \in {}^{\omega}\mathbb{R}_{\ge 0}^{m}, {A}^{T}y \ge c\}</math>. Its solution is the geometric centre <math>g</math> of the polytope <math>P_0</math>. For <math>p_k^* := \text{min}\,\check{p}_k + \text{max}\,\check{p}_k</math> and <math>k = 1, ..., \grave{z}</math> approximate <math>g</math> by <math>p_0 := (x_0, y_0, r_0)^T</math> until <math>||\Delta p||_1</math> is sufficiently small. The solution <math>t^o(x^o, y^o, r^o)^T</math> of the two-dimensional LP min <math>\{ r \in [0, \rho] : t \in {}^{\omega}\mathbb{R}_{> 0}, t(x_0, y_0)^T \in P_r\}</math> approximates <math>g</math> better and achieves <math>r \le \check{\rho}</math>.
+
For induction basis <math>n = 2</math> resp. 3, the hypothesis states the first interval to contain <math>x_n/{_\epsilon}x_n</math> primes for <math>n \in {}^{\omega}{\mathbb{N}_{\ge2}}</math> and <math>x_4 \in [2, 4[</math>. Stepping from <math>x_n</math> to <math>x_n^2</math> finds <math>\pi(x_n^2) = \pi(x_n) \check{x}_n</math> primes only from <math>\pi(x_n) = x_n/{_\epsilon}x_n</math>. The average prime gap is <math>{_\epsilon}x_n</math>, the maximal one <math>{_\epsilon}x_n^2</math> and the maximal <math>x_n^2</math> to <math>x_n</math> behaves like <math>\omega</math> to <math>{\omega}^{\tilde{2}}.\square</math>
  
 +
=== Gelfond-Schneider theorem ===
  
Repeat this for <math>t^o(x^o, y^o)^T</math> until <math>g \in P_0</math> is computed in <math>\mathcal{O}({}_2\rho^2dmn)</math> if it exists. Solving all two-dimensional LPs <math>\text{min}_k r_k</math> by bisection methods for <math>r_k \in {}^{\omega}\mathbb{R}_{\ge 0}</math> and <math>k = 1, ..., z</math> in <math>\mathcal{O}({\vartheta}^2)</math> each time determines <math>q \in {}^{\omega}\mathbb{R}^k</math> where <math>q_k := \Delta p_k \Delta r_k/r</math> and <math>r := \text{min}_k \Delta r_k</math>. Let simplified <math>|\Delta p_1| = ... = |\Delta p_{z}|</math>. Here min <math>r_{\grave{z}}</math> for <math>p^* := p + wq</math> and <math>w \in {}^{\omega}\mathbb{R}_{\ge 0}</math> may be solved, too. If <math>\text{min}_k \Delta r_k r = 0</math> follows, stop computing, otherwise repeat until min <math>r = 0</math> or min <math>r &gt; 0</math> is sure.<math>\square</math>
+
It holds <math>a^b \notin {}_{\omega}^{\omega} \mathbb{A}_\mathbb{C}</math> where <math>a, c \in {}^{\omega} \mathbb{A}_\mathbb{C} \setminus \mathbb{B}</math> and infinitesimal <math>\varepsilon, b \in {}^{\omega}\mathbb{A}_\mathbb{C} \setminus {}_{\omega}^{\omega}\mathbb{R}</math>.
 +
 
 +
==== Proof: ====
 +
 
 +
The minimal polynomials <math>p</math> (and <math>q</math>) of <math>c^r</math> resp. <math>c^{r\pm\varepsilon} = a^b</math> for maximal <math>r \in {}_{\omega}^{\omega}\mathbb{R}_{>0}</math> and <math>f = p\;(q)</math> lead to the contradiction <math>{}^1f(c^{r(\pm\varepsilon)}) \ne 0 = (f(c^r) - f(c^{r\pm\varepsilon})) / (c^r - c^{r\pm\varepsilon}) = {}^1f(c^{r(\pm\varepsilon)}).\square</math>
 +
 
 +
== MWiki has moved ==
 +
The new URL is: [https://en.hwiki.de/maths.html HWiki]
 +
 
 +
== Recommended reading ==
  
== Recommended readings ==
 
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
  
 
[[de:Hauptseite]]
 
[[de:Hauptseite]]

Latest revision as of 17:01, 31 July 2024

Welcome to MWiki

Theorems of the month

Prime number theorem

For [math]\displaystyle{ \pi(x) := |\{p \in {\mathbb{P}_{\le x}} : x \in {}^{\omega}{\mathbb{R}}\}| }[/math], it holds that [math]\displaystyle{ \pi(\omega) = \widetilde{{_e}\omega}\omega + \mathcal{O}({_\epsilon}\omega\;{\omega}^{\tilde{2}}) }[/math].

Proof:

From intervals of fix length [math]\displaystyle{ y \in {}^{\omega}{\mathbb{R}_{\gt 0}}, \check{y} }[/math] set-2-tuples of prime numbers are formed such that the first interval has the unchanged representative prime number density and the second interval is empty, then the interval with the second most prime number density is followed by the second least one etc. The Stirling formula suggests the prime gap [math]\displaystyle{ n = {\epsilon}^{\sigma} = \mathcal{O}({_\epsilon}(n!)) }[/math].

For induction basis [math]\displaystyle{ n = 2 }[/math] resp. 3, the hypothesis states the first interval to contain [math]\displaystyle{ x_n/{_\epsilon}x_n }[/math] primes for [math]\displaystyle{ n \in {}^{\omega}{\mathbb{N}_{\ge2}} }[/math] and [math]\displaystyle{ x_4 \in [2, 4[ }[/math]. Stepping from [math]\displaystyle{ x_n }[/math] to [math]\displaystyle{ x_n^2 }[/math] finds [math]\displaystyle{ \pi(x_n^2) = \pi(x_n) \check{x}_n }[/math] primes only from [math]\displaystyle{ \pi(x_n) = x_n/{_\epsilon}x_n }[/math]. The average prime gap is [math]\displaystyle{ {_\epsilon}x_n }[/math], the maximal one [math]\displaystyle{ {_\epsilon}x_n^2 }[/math] and the maximal [math]\displaystyle{ x_n^2 }[/math] to [math]\displaystyle{ x_n }[/math] behaves like [math]\displaystyle{ \omega }[/math] to [math]\displaystyle{ {\omega}^{\tilde{2}}.\square }[/math]

Gelfond-Schneider theorem

It holds [math]\displaystyle{ a^b \notin {}_{\omega}^{\omega} \mathbb{A}_\mathbb{C} }[/math] where [math]\displaystyle{ a, c \in {}^{\omega} \mathbb{A}_\mathbb{C} \setminus \mathbb{B} }[/math] and infinitesimal [math]\displaystyle{ \varepsilon, b \in {}^{\omega}\mathbb{A}_\mathbb{C} \setminus {}_{\omega}^{\omega}\mathbb{R} }[/math].

Proof:

The minimal polynomials [math]\displaystyle{ p }[/math] (and [math]\displaystyle{ q }[/math]) of [math]\displaystyle{ c^r }[/math] resp. [math]\displaystyle{ c^{r\pm\varepsilon} = a^b }[/math] for maximal [math]\displaystyle{ r \in {}_{\omega}^{\omega}\mathbb{R}_{\gt 0} }[/math] and [math]\displaystyle{ f = p\;(q) }[/math] lead to the contradiction [math]\displaystyle{ {}^1f(c^{r(\pm\varepsilon)}) \ne 0 = (f(c^r) - f(c^{r\pm\varepsilon})) / (c^r - c^{r\pm\varepsilon}) = {}^1f(c^{r(\pm\varepsilon)}).\square }[/math]

MWiki has moved

The new URL is: HWiki

Recommended reading

Nonstandard Mathematics