Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Greatest-prime Criterion and Transcendence of Euler's Constant)
(Prime number and Gelfond-Schneider theorem)
 
(19 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
= Welcome to MWiki =
 
= Welcome to MWiki =
 
== Theorems of the month ==
 
== Theorems of the month ==
=== Greatest-prime Criterion ===
+
=== Prime number theorem ===
  
If a real number may be represented as an irreducible fraction <math>\widetilde{ap}b \pm \tilde{s}t</math>, where <math>a, b, s</math>, and <math>t</math> are natural numbers, <math>abst \ne 0</math>, <math>a + s &gt; 2</math>, and the (second-)greatest prime number <math>p \in {}^{\omega }\mathbb{P}, p \nmid b</math> and <math>p \nmid s</math>, then <math>r</math> is <math>\omega</math>-transcendental.
+
For <math>\pi(x) := |\{p \in {\mathbb{P}_{\le x}} : x \in {}^{\omega}{\mathbb{R}}\}|</math>, it holds that <math>\pi(\omega) = \widetilde{{_e}\omega}\omega + \mathcal{O}({_\epsilon}\omega\;{\omega}^{\tilde{2}})</math>.
  
 
==== Proof: ====
 
==== Proof: ====
The denominator <math>\widetilde{ap s} (bs \pm apt)</math> is <math>\ge \hat{p} \ge \hat{\omega} - \mathcal{O}({_e}\omega{\omega}^{\tilde{2}}) &gt; \omega</math> by the prime number theorem.<math>\square</math>
+
From intervals of fix length <math>y \in {}^{\omega}{\mathbb{R}_{>0}}, \check{y}</math> set-2-tuples of prime numbers are formed such that the first interval has the unchanged representative prime number density and the second interval is empty, then the interval with the second most prime number density is followed by the second least one etc. The Stirling formula suggests the prime gap <math>n = {\epsilon}^{\sigma} = \mathcal{O}({_\epsilon}(n!))</math>.
  
=== Transcendence of Euler's Constant ===
+
For induction basis <math>n = 2</math> resp. 3, the hypothesis states the first interval to contain <math>x_n/{_\epsilon}x_n</math> primes for <math>n \in {}^{\omega}{\mathbb{N}_{\ge2}}</math> and <math>x_4 \in [2, 4[</math>. Stepping from <math>x_n</math> to <math>x_n^2</math> finds <math>\pi(x_n^2) = \pi(x_n) \check{x}_n</math> primes only from <math>\pi(x_n) = x_n/{_\epsilon}x_n</math>. The average prime gap is <math>{_\epsilon}x_n</math>, the maximal one <math>{_\epsilon}x_n^2</math> and the maximal <math>x_n^2</math> to <math>x_n</math> behaves like <math>\omega</math> to <math>{\omega}^{\tilde{2}}.\square</math>
  
For <math>x \in {}^{\omega }{\mathbb{R}}</math>, let be <math>s(x) := {+}_{n=1}^{\omega}{\tilde{n}{{x}^{n}}}</math> and <math>\gamma := s(1) - {_e}\omega = {\uparrow}_{1}^{\omega}{\left( \widetilde{\left\lfloor x \right\rfloor} - \tilde{x} \right)\downarrow x}</math> Euler's constant, where rearranging shows <math>\gamma \in \; ]0, 1[</math>.
+
=== Gelfond-Schneider theorem ===
  
If <math>{_e}\omega = s(\tilde{2})\;{_2}\omega</math> is accepted, <math>\gamma \in {}^{\omega }\mathbb{T}_{\mathbb{R}}</math> is true with a precision of <math>\mathcal{O}({2}^{-\omega}\tilde{\omega}\;{_e}\omega)</math>.
+
It holds <math>a^b \notin {}_{\omega}^{\omega} \mathbb{A}_\mathbb{C}</math> where <math>a, c \in {}^{\omega} \mathbb{A}_\mathbb{C} \setminus \mathbb{B}</math> and infinitesimal <math>\varepsilon, b \in {}^{\omega}\mathbb{A}_\mathbb{C} \setminus {}_{\omega}^{\omega}\mathbb{R}</math>.
  
 
==== Proof: ====
 
==== Proof: ====
The (exact) integration of the geometric series yields <math>-{_e}(-\acute{x}) = s(x) + \mathcal{O}(\tilde{\omega}{x}^{\grave{\omega}}/\acute{x}) + t(x)dx</math> for <math>x \in [-1, 1 - \tilde{\nu}]</math> and <math>t(x) \in {}^{\omega }{\mathbb{R}}</math> such that <math>|t(x)| &lt; {\omega}</math>.
 
  
After applying Fermat's little theorem to the numerator of <math>\tilde{p}(1 - 2^{-p}\,{_2}\omega)</math> for <math>p = \max\, {}^{\omega}\mathbb{P}</math>, the greatest-prime criterion yields the claim.<math>\square</math>
+
The minimal polynomials <math>p</math> (and <math>q</math>) of <math>c^r</math> resp. <math>c^{r\pm\varepsilon} = a^b</math> for maximal <math>r \in {}_{\omega}^{\omega}\mathbb{R}_{>0}</math> and <math>f = p\;(q)</math> lead to the contradiction <math>{}^1f(c^{r(\pm\varepsilon)}) \ne 0 = (f(c^r) - f(c^{r\pm\varepsilon})) / (c^r - c^{r\pm\varepsilon}) = {}^1f(c^{r(\pm\varepsilon)}).\square</math>
 +
 
 +
== MWiki has moved ==
 +
The new URL is: [https://en.hwiki.de/maths.html HWiki]
  
 
== Recommended reading ==
 
== Recommended reading ==

Latest revision as of 17:01, 31 July 2024

Welcome to MWiki

Theorems of the month

Prime number theorem

For [math]\displaystyle{ \pi(x) := |\{p \in {\mathbb{P}_{\le x}} : x \in {}^{\omega}{\mathbb{R}}\}| }[/math], it holds that [math]\displaystyle{ \pi(\omega) = \widetilde{{_e}\omega}\omega + \mathcal{O}({_\epsilon}\omega\;{\omega}^{\tilde{2}}) }[/math].

Proof:

From intervals of fix length [math]\displaystyle{ y \in {}^{\omega}{\mathbb{R}_{\gt 0}}, \check{y} }[/math] set-2-tuples of prime numbers are formed such that the first interval has the unchanged representative prime number density and the second interval is empty, then the interval with the second most prime number density is followed by the second least one etc. The Stirling formula suggests the prime gap [math]\displaystyle{ n = {\epsilon}^{\sigma} = \mathcal{O}({_\epsilon}(n!)) }[/math].

For induction basis [math]\displaystyle{ n = 2 }[/math] resp. 3, the hypothesis states the first interval to contain [math]\displaystyle{ x_n/{_\epsilon}x_n }[/math] primes for [math]\displaystyle{ n \in {}^{\omega}{\mathbb{N}_{\ge2}} }[/math] and [math]\displaystyle{ x_4 \in [2, 4[ }[/math]. Stepping from [math]\displaystyle{ x_n }[/math] to [math]\displaystyle{ x_n^2 }[/math] finds [math]\displaystyle{ \pi(x_n^2) = \pi(x_n) \check{x}_n }[/math] primes only from [math]\displaystyle{ \pi(x_n) = x_n/{_\epsilon}x_n }[/math]. The average prime gap is [math]\displaystyle{ {_\epsilon}x_n }[/math], the maximal one [math]\displaystyle{ {_\epsilon}x_n^2 }[/math] and the maximal [math]\displaystyle{ x_n^2 }[/math] to [math]\displaystyle{ x_n }[/math] behaves like [math]\displaystyle{ \omega }[/math] to [math]\displaystyle{ {\omega}^{\tilde{2}}.\square }[/math]

Gelfond-Schneider theorem

It holds [math]\displaystyle{ a^b \notin {}_{\omega}^{\omega} \mathbb{A}_\mathbb{C} }[/math] where [math]\displaystyle{ a, c \in {}^{\omega} \mathbb{A}_\mathbb{C} \setminus \mathbb{B} }[/math] and infinitesimal [math]\displaystyle{ \varepsilon, b \in {}^{\omega}\mathbb{A}_\mathbb{C} \setminus {}_{\omega}^{\omega}\mathbb{R} }[/math].

Proof:

The minimal polynomials [math]\displaystyle{ p }[/math] (and [math]\displaystyle{ q }[/math]) of [math]\displaystyle{ c^r }[/math] resp. [math]\displaystyle{ c^{r\pm\varepsilon} = a^b }[/math] for maximal [math]\displaystyle{ r \in {}_{\omega}^{\omega}\mathbb{R}_{\gt 0} }[/math] and [math]\displaystyle{ f = p\;(q) }[/math] lead to the contradiction [math]\displaystyle{ {}^1f(c^{r(\pm\varepsilon)}) \ne 0 = (f(c^r) - f(c^{r\pm\varepsilon})) / (c^r - c^{r\pm\varepsilon}) = {}^1f(c^{r(\pm\varepsilon)}).\square }[/math]

MWiki has moved

The new URL is: HWiki

Recommended reading

Nonstandard Mathematics