Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Green's theorem)
(Prime number and Gelfond-Schneider theorem)
 
(81 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
= Welcome to MWiki =
 
= Welcome to MWiki =
== Theorem of the month ==
+
== Theorems of the month ==
=== Green's theorem ===
+
=== Prime number theorem ===
  
Given neighbourhood relations <math>B \subseteq {A}^{2}</math> for some simply connected <math>h</math>-set <math>A \subseteq {}^{(\omega)}\mathbb{R}^{2}</math>, infinitesimal <math>h = |dBx|= |dBy| = |\curvearrowright B \gamma(t) - \gamma(t)| = \mathcal{O}({\hat{\omega}}^{m})</math>, sufficiently large <math>m \in \mathbb{N}^{*}, (x, y) \in A, {A}^{-} := \{(x, y) \in A : (x + h, y + h) \in A\}</math>, and a simply closed path <math>\gamma: [a, b[\rightarrow \partial A</math> followed anticlockwise, choosing <math>\curvearrowright B \gamma(t) = \gamma(\curvearrowright D t)</math> for <math>t \in [a, b[, D \subseteq {[a, b]}^{2}</math>, the following equation holds for sufficiently <math>\alpha</math>-continuous functions <math>u, v: A \rightarrow \mathbb{R}</math> with not necessarily continuous partial derivatives <math>\partial Bu/\partial Bx, \partial Bu/\partial By, \partial Bv/\partial Bx</math> and <math>\partial Bv/\partial By</math>:<div style="text-align:center;"><math>\int\limits_{\gamma }{(u\,dBx+v\,dBy)}=\int\limits_{(x,y)\in {{A}^{-}}}{\left( \frac{\partial Bv}{\partial Bx}-\frac{\partial Bu}{\partial By} \right)dB(x,y)}.</math></div>
+
For <math>\pi(x) := |\{p \in {\mathbb{P}_{\le x}} : x \in {}^{\omega}{\mathbb{R}}\}|</math>, it holds that <math>\pi(\omega) = \widetilde{{_e}\omega}\omega + \mathcal{O}({_\epsilon}\omega\;{\omega}^{\tilde{2}})</math>.
  
 
==== Proof: ====
 
==== Proof: ====
Wlog the case <math>A := \{(x, y) : r \le x \le s, f(x) \le y \le g(x)\}, r, s \in {}^{(\omega)}\mathbb{R}, f, g : \partial A \rightarrow {}^{(\omega)}\mathbb{R}</math> is proved, since the proof is analogous for each case rotated by <math>\iota</math>, and every simply connected <math>h</math>-set is a union of such sets. It is simply shown that<div style="text-align:center;"><math>\int\limits_{\gamma }{u\,dBx}=-\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}</math></div>since the other relation is given analogously. Since the regions of <math>\gamma</math> where <math>dBx = 0</math> do not contribute to the integral, for negligibly small <math>t := h(u(s, g(s)) - u(r, g(r)))</math>, it holds that<div style="text-align:center;"><math>-\int\limits_{\gamma }{u\,dBx}-t=\int\limits_{r}^{s}{u(x,g(x))dBx}-\int\limits_{r}^{s}{u(x,f(x))dBx}=\int\limits_{r}^{s}{\int\limits_{f(x)}^{g(x)}{\frac{\partial Bu}{\partial By}}dBydBx}=\int\limits_{(x,y)\in {{A}^{-}}}{\frac{\partial Bu}{\partial By}dB(x,y)}.\square</math></div>
+
From intervals of fix length <math>y \in {}^{\omega}{\mathbb{R}_{>0}}, \check{y}</math> set-2-tuples of prime numbers are formed such that the first interval has the unchanged representative prime number density and the second interval is empty, then the interval with the second most prime number density is followed by the second least one etc. The Stirling formula suggests the prime gap <math>n = {\epsilon}^{\sigma} = \mathcal{O}({_\epsilon}(n!))</math>.
 +
 
 +
For induction basis <math>n = 2</math> resp. 3, the hypothesis states the first interval to contain <math>x_n/{_\epsilon}x_n</math> primes for <math>n \in {}^{\omega}{\mathbb{N}_{\ge2}}</math> and <math>x_4 \in [2, 4[</math>. Stepping from <math>x_n</math> to <math>x_n^2</math> finds <math>\pi(x_n^2) = \pi(x_n) \check{x}_n</math> primes only from <math>\pi(x_n) = x_n/{_\epsilon}x_n</math>. The average prime gap is <math>{_\epsilon}x_n</math>, the maximal one <math>{_\epsilon}x_n^2</math> and the maximal <math>x_n^2</math> to <math>x_n</math> behaves like <math>\omega</math> to <math>{\omega}^{\tilde{2}}.\square</math>
 +
 
 +
=== Gelfond-Schneider theorem ===
 +
 
 +
It holds <math>a^b \notin {}_{\omega}^{\omega} \mathbb{A}_\mathbb{C}</math> where <math>a, c \in {}^{\omega} \mathbb{A}_\mathbb{C} \setminus \mathbb{B}</math> and infinitesimal <math>\varepsilon, b \in {}^{\omega}\mathbb{A}_\mathbb{C} \setminus {}_{\omega}^{\omega}\mathbb{R}</math>.
 +
 
 +
==== Proof: ====
 +
 
 +
The minimal polynomials <math>p</math> (and <math>q</math>) of <math>c^r</math> resp. <math>c^{r\pm\varepsilon} = a^b</math> for maximal <math>r \in {}_{\omega}^{\omega}\mathbb{R}_{>0}</math> and <math>f = p\;(q)</math> lead to the contradiction <math>{}^1f(c^{r(\pm\varepsilon)}) \ne 0 = (f(c^r) - f(c^{r\pm\varepsilon})) / (c^r - c^{r\pm\varepsilon}) = {}^1f(c^{r(\pm\varepsilon)}).\square</math>
 +
 
 +
== MWiki has moved ==
 +
The new URL is: [https://en.hwiki.de/maths.html HWiki]
  
 
== Recommended reading ==
 
== Recommended reading ==

Latest revision as of 18:01, 31 July 2024

Welcome to MWiki

Theorems of the month

Prime number theorem

For [math]\displaystyle{ \pi(x) := |\{p \in {\mathbb{P}_{\le x}} : x \in {}^{\omega}{\mathbb{R}}\}| }[/math], it holds that [math]\displaystyle{ \pi(\omega) = \widetilde{{_e}\omega}\omega + \mathcal{O}({_\epsilon}\omega\;{\omega}^{\tilde{2}}) }[/math].

Proof:

From intervals of fix length [math]\displaystyle{ y \in {}^{\omega}{\mathbb{R}_{\gt 0}}, \check{y} }[/math] set-2-tuples of prime numbers are formed such that the first interval has the unchanged representative prime number density and the second interval is empty, then the interval with the second most prime number density is followed by the second least one etc. The Stirling formula suggests the prime gap [math]\displaystyle{ n = {\epsilon}^{\sigma} = \mathcal{O}({_\epsilon}(n!)) }[/math].

For induction basis [math]\displaystyle{ n = 2 }[/math] resp. 3, the hypothesis states the first interval to contain [math]\displaystyle{ x_n/{_\epsilon}x_n }[/math] primes for [math]\displaystyle{ n \in {}^{\omega}{\mathbb{N}_{\ge2}} }[/math] and [math]\displaystyle{ x_4 \in [2, 4[ }[/math]. Stepping from [math]\displaystyle{ x_n }[/math] to [math]\displaystyle{ x_n^2 }[/math] finds [math]\displaystyle{ \pi(x_n^2) = \pi(x_n) \check{x}_n }[/math] primes only from [math]\displaystyle{ \pi(x_n) = x_n/{_\epsilon}x_n }[/math]. The average prime gap is [math]\displaystyle{ {_\epsilon}x_n }[/math], the maximal one [math]\displaystyle{ {_\epsilon}x_n^2 }[/math] and the maximal [math]\displaystyle{ x_n^2 }[/math] to [math]\displaystyle{ x_n }[/math] behaves like [math]\displaystyle{ \omega }[/math] to [math]\displaystyle{ {\omega}^{\tilde{2}}.\square }[/math]

Gelfond-Schneider theorem

It holds [math]\displaystyle{ a^b \notin {}_{\omega}^{\omega} \mathbb{A}_\mathbb{C} }[/math] where [math]\displaystyle{ a, c \in {}^{\omega} \mathbb{A}_\mathbb{C} \setminus \mathbb{B} }[/math] and infinitesimal [math]\displaystyle{ \varepsilon, b \in {}^{\omega}\mathbb{A}_\mathbb{C} \setminus {}_{\omega}^{\omega}\mathbb{R} }[/math].

Proof:

The minimal polynomials [math]\displaystyle{ p }[/math] (and [math]\displaystyle{ q }[/math]) of [math]\displaystyle{ c^r }[/math] resp. [math]\displaystyle{ c^{r\pm\varepsilon} = a^b }[/math] for maximal [math]\displaystyle{ r \in {}_{\omega}^{\omega}\mathbb{R}_{\gt 0} }[/math] and [math]\displaystyle{ f = p\;(q) }[/math] lead to the contradiction [math]\displaystyle{ {}^1f(c^{r(\pm\varepsilon)}) \ne 0 = (f(c^r) - f(c^{r\pm\varepsilon})) / (c^r - c^{r\pm\varepsilon}) = {}^1f(c^{r(\pm\varepsilon)}).\square }[/math]

MWiki has moved

The new URL is: HWiki

Recommended reading

Nonstandard Mathematics