Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Prime number and Gelfond-Schneider theorem)
 
(80 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
= Welcome to MWiki =
 
= Welcome to MWiki =
== Theorem of the month ==
+
== Theorems of the month ==
=== Fermat's Last Theorem ===
+
=== Prime number theorem ===
  
For all <math>p \in {}^{\omega }{\mathbb{P}_{\ge 3}}</math> and <math>x, y, z \in {}^{\omega }{\mathbb{N}^{*}}</math>, always <math>x^p + y^p \ne z^p</math> holds and thus for all <math>m \in {}^{\omega }{\mathbb{N}_{\ge 3}}</math> instead of <math>p</math>.
+
For <math>\pi(x) := |\{p \in {\mathbb{P}_{\le x}} : x \in {}^{\omega}{\mathbb{R}}\}|</math>, it holds that <math>\pi(\omega) = \widetilde{{_e}\omega}\omega + \mathcal{O}({_\epsilon}\omega\;{\omega}^{\tilde{2}})</math>.
  
 
==== Proof: ====
 
==== Proof: ====
Because of [[w:Fermat's little theorem|<span class="wikipedia">Fermat's little theorem</span>]], rewritten, <math>f_{akp}(n) := (2n + a - kp)^p - n^p - (n + a)^p \ne 0</math> is to show for <math>a, k, n \in {}^{\omega }{\mathbb{N}^{*}}</math> where <math>kp &lt; n</math>.
+
From intervals of fix length <math>y \in {}^{\omega}{\mathbb{R}_{>0}}, \check{y}</math> set-2-tuples of prime numbers are formed such that the first interval has the unchanged representative prime number density and the second interval is empty, then the interval with the second most prime number density is followed by the second least one etc. The Stirling formula suggests the prime gap <math>n = {\epsilon}^{\sigma} = \mathcal{O}({_\epsilon}(n!))</math>.
<div class="toccolours mw-collapsible mw-collapsed" style="width:100%; overflow:auto;">
 
<div style="font-weight:bold;line-height:1.6;">Proof details</div>
 
<div class="mw-collapsible-content">From <math>x := n, y:= n + a</math> and <math>z := 2n + a + d</math> where <math>d \in {}^{\omega }{\mathbb{N}^{*}}</math>, it follows due to <math>z^p \equiv y, y^p \equiv y</math> and <math>z^p \equiv z</math> first <math>d \equiv 0 \mod p</math>, then <math>d = \pm kp</math>. Since <math>x + y = 2n + a &gt; z</math> is required, <math>f_{akp}(n)</math> is chosen properly.</div></div>
 
  
[[w:Mathematical induction|<span class="wikipedia">Induction</span>]] for <math>n</math> implies the claim due to the case <math>m = 4</math><ref name="Ribenboim">[[w:Paulo Ribenboim|<span class="wikipedia">Ribenboim, Paulo</span>]]: ''Thirteen Lectures on Fermat's Last Theorem'' : 1979; Springer; New York; ISBN 9780387904320, p. 35 - 38.</ref> and <math>y &gt; x &gt; p</math><ref name="loccit">loc. cit., p. 226.</ref>:
+
For induction basis <math>n = 2</math> resp. 3, the hypothesis states the first interval to contain <math>x_n/{_\epsilon}x_n</math> primes for <math>n \in {}^{\omega}{\mathbb{N}_{\ge2}}</math> and <math>x_4 \in [2, 4[</math>. Stepping from <math>x_n</math> to <math>x_n^2</math> finds <math>\pi(x_n^2) = \pi(x_n) \check{x}_n</math> primes only from <math>\pi(x_n) = x_n/{_\epsilon}x_n</math>. The average prime gap is <math>{_\epsilon}x_n</math>, the maximal one <math>{_\epsilon}x_n^2</math> and the maximal <math>x_n^2</math> to <math>x_n</math> behaves like <math>\omega</math> to <math>{\omega}^{\tilde{2}}.\square</math>
  
'''Induction basis''' <math>(n \le p): f_{akp}(n) \ne 0</math> for all <math>a, k</math> and <math>p</math>. Let <math>r \in {}^{\omega }{\mathbb{N}_{&lt; p}}</math>.
+
=== Gelfond-Schneider theorem ===
  
'''Induction step''' <math>\,(n = q + r \; \rightarrow \; n^{*} = n + p):</math> Let <math>f_{akp}(n^{*}) \ge 0</math>, but <math>f_{akp}(n) &lt; 0</math>, since <math>f_{akp}(n)</math> is [[w:Monotonic function|<span class="wikipedia">strictly monotonically increasing</span>]] and otherwise nothing to prove.
+
It holds <math>a^b \notin {}_{\omega}^{\omega} \mathbb{A}_\mathbb{C}</math> where <math>a, c \in {}^{\omega} \mathbb{A}_\mathbb{C} \setminus \mathbb{B}</math> and infinitesimal <math>\varepsilon, b \in {}^{\omega}\mathbb{A}_\mathbb{C} \setminus {}_{\omega}^{\omega}\mathbb{R}</math>.
<div class="toccolours mw-collapsible mw-collapsed" style="width:100%; overflow:auto;">
 
<div style="font-weight:bold;line-height:1.6;">Proof details</div>
 
<div class="mw-collapsible-content">The strict monotonicity follows from (continuously) differentiating by <math>n</math> such that <math>f_{akp}(n)' = p(2(2n + a - kp)^{p - 1} - n^{p - 1} - (n + a)^{p - 1}) &gt; 0</math>.</div></div>
 
  
It holds <math>f_{akp}(n^{*}) = (\int_0^{n^{*}}{f_{akp}(v)}dv)' \ne 0</math>, since <math>(n^{*})^{p + 1} + (n^{*} + a)^{p + 1}</math> does not divide <math>((n^{*})^p + (n^{*} + a)^p)^2</math> after separating the positive factor as [[w:Polynomial long division|<span class="wikipedia">polynomial division</span>]] shows.<math>\square</math>
+
==== Proof: ====
<div class="toccolours mw-collapsible mw-collapsed" style="width:100%; overflow:auto;">
+
 
<div style="font-weight:bold;line-height:1.6;">Proof details</div>
+
The minimal polynomials <math>p</math> (and <math>q</math>) of <math>c^r</math> resp. <math>c^{r\pm\varepsilon} = a^b</math> for maximal <math>r \in {}_{\omega}^{\omega}\mathbb{R}_{>0}</math> and <math>f = p\;(q)</math> lead to the contradiction <math>{}^1f(c^{r(\pm\varepsilon)}) \ne 0 = (f(c^r) - f(c^{r\pm\varepsilon})) / (c^r - c^{r\pm\varepsilon}) = {}^1f(c^{r(\pm\varepsilon)}).\square</math>
<div class="mw-collapsible-content"><math>\int_0^{n^{*}}{f_{akp}(v)}dv = ((2n^{*} + a - kp)^{p + 1} / 2 - (n^{*})^{p + 1} - (n^{*} + a)^{p + 1})/(p + 1) + t = ((2n^{*} + a - kp)^{(p + 1)/2} \pm \sqrt{2(n^{*})^{p + 1} + 2(n^{*} + a)^{p + 1}})^2/(2p + 2) + t</math> for <math>t \in {}^{\omega}{\mathbb{Q}}</math> where the third binomial formula <math>r^2 - s^2 = (r \pm s)^2 := (r + s)(r - s)</math> was used. After separating the negligible factor <math>\hat{2}((2n^{*} + a - kp)^{(p + 1)/2} + \sqrt{2(n^{*})^{p + 1} + 2(n^{*} + a)^{p + 1}})/(p + 1)</math>, the derivative is just <math>(\hat{2}(2n^{*} + a - kp)^{(p - 1)/2} - \hat{2}((n^{*})^p + (n^{*} + a)^p)/\sqrt{2(n^{*})^{p + 1} + 2(n^{*} + a)^{p + 1}})</math>. After squaring the terms, the polynomial division gives <math>(n^{*})^{p - 1} + (n^{*} + a)^{p - 1} + a^2(n^{*})^{p - 1}(n^{*} + a)^{p - 1}/((n^{*})^{p + 1} + (n^{*} + a)^{p + 1})</math> as recalculating by multiplication confirms.</div></div>
+
 
 +
== MWiki has moved ==
 +
The new URL is: [https://en.hwiki.de/maths.html HWiki]
  
 
== Recommended reading ==
 
== Recommended reading ==
  
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
== References ==
 
<references />
 
  
 
[[de:Hauptseite]]
 
[[de:Hauptseite]]

Latest revision as of 18:01, 31 July 2024

Welcome to MWiki

Theorems of the month

Prime number theorem

For [math]\displaystyle{ \pi(x) := |\{p \in {\mathbb{P}_{\le x}} : x \in {}^{\omega}{\mathbb{R}}\}| }[/math], it holds that [math]\displaystyle{ \pi(\omega) = \widetilde{{_e}\omega}\omega + \mathcal{O}({_\epsilon}\omega\;{\omega}^{\tilde{2}}) }[/math].

Proof:

From intervals of fix length [math]\displaystyle{ y \in {}^{\omega}{\mathbb{R}_{\gt 0}}, \check{y} }[/math] set-2-tuples of prime numbers are formed such that the first interval has the unchanged representative prime number density and the second interval is empty, then the interval with the second most prime number density is followed by the second least one etc. The Stirling formula suggests the prime gap [math]\displaystyle{ n = {\epsilon}^{\sigma} = \mathcal{O}({_\epsilon}(n!)) }[/math].

For induction basis [math]\displaystyle{ n = 2 }[/math] resp. 3, the hypothesis states the first interval to contain [math]\displaystyle{ x_n/{_\epsilon}x_n }[/math] primes for [math]\displaystyle{ n \in {}^{\omega}{\mathbb{N}_{\ge2}} }[/math] and [math]\displaystyle{ x_4 \in [2, 4[ }[/math]. Stepping from [math]\displaystyle{ x_n }[/math] to [math]\displaystyle{ x_n^2 }[/math] finds [math]\displaystyle{ \pi(x_n^2) = \pi(x_n) \check{x}_n }[/math] primes only from [math]\displaystyle{ \pi(x_n) = x_n/{_\epsilon}x_n }[/math]. The average prime gap is [math]\displaystyle{ {_\epsilon}x_n }[/math], the maximal one [math]\displaystyle{ {_\epsilon}x_n^2 }[/math] and the maximal [math]\displaystyle{ x_n^2 }[/math] to [math]\displaystyle{ x_n }[/math] behaves like [math]\displaystyle{ \omega }[/math] to [math]\displaystyle{ {\omega}^{\tilde{2}}.\square }[/math]

Gelfond-Schneider theorem

It holds [math]\displaystyle{ a^b \notin {}_{\omega}^{\omega} \mathbb{A}_\mathbb{C} }[/math] where [math]\displaystyle{ a, c \in {}^{\omega} \mathbb{A}_\mathbb{C} \setminus \mathbb{B} }[/math] and infinitesimal [math]\displaystyle{ \varepsilon, b \in {}^{\omega}\mathbb{A}_\mathbb{C} \setminus {}_{\omega}^{\omega}\mathbb{R} }[/math].

Proof:

The minimal polynomials [math]\displaystyle{ p }[/math] (and [math]\displaystyle{ q }[/math]) of [math]\displaystyle{ c^r }[/math] resp. [math]\displaystyle{ c^{r\pm\varepsilon} = a^b }[/math] for maximal [math]\displaystyle{ r \in {}_{\omega}^{\omega}\mathbb{R}_{\gt 0} }[/math] and [math]\displaystyle{ f = p\;(q) }[/math] lead to the contradiction [math]\displaystyle{ {}^1f(c^{r(\pm\varepsilon)}) \ne 0 = (f(c^r) - f(c^{r\pm\varepsilon})) / (c^r - c^{r\pm\varepsilon}) = {}^1f(c^{r(\pm\varepsilon)}).\square }[/math]

MWiki has moved

The new URL is: HWiki

Recommended reading

Nonstandard Mathematics