Difference between revisions of "Main Page"

From MWiki
Jump to: navigation, search
(Speedup theorems)
m (Reversion theorem of Taylor series)
(35 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
= Welcome to MWiki =
 
= Welcome to MWiki =
 
== Theorems of the month ==
 
== Theorems of the month ==
=== Definition ===
+
=== Counting theorem for algebraic numbers ===
  
Let <math>f_n^*(z) = f(\eta_nz)</math> <em>sisters</em> of the Taylor series <math>f(z) \in \mathcal{O}(D)</math> centred on 0 on the domain <math>D \subseteq {}^{\omega}\mathbb{C}</math> where <math>m, n \in {}^{\omega}\mathbb{N}^{*}</math> and <math>\eta_n^m := i^{2^{\lceil m/n \rceil}}</math>. Then let <math>\delta_n^*f = (f - f_n^*)/2</math> the <em>halved sister distances</em> of <math>f.</math> For <math>\mu_n^m := m!n!/(m + n)!</math>, <math>\mu</math> and <math>\eta</math> form an calculus, which can be resolved on the level of Taylor series and allows an easy and finite closed representation of integrals and derivatives.<math>\triangle</math>
+
The number <math>\mathbb{A}(m, n)</math> of algebraic numbers of polynomial or series degree <math>m</math> and thus in general for the Riemann zeta function <math>\zeta</math> asymptotically satisfies the equation <math>\mathbb{A}(m, n) = \widetilde{\zeta(\grave{m})}\,z(m){{(2n+1)}^{m}}\left( n+\mathcal{O}({_e}n) \right)</math>, where <math>z(m)</math> is the average number of zeros of a polynomial or series.
  
=== Speedup theorem for integrals ===
+
==== Proof: ====
 
+
The case <math>m = 1</math> requires by <ref name="Scheid">[[w:Harald Scheid|<span class="wikipedia">Scheid, Harald</span>]]: ''Zahlentheorie'' : 1st Ed.; 1991; Bibliographisches Institut; Mannheim; ISBN 9783411148417, p. 323.</ref> the error term <math>\mathcal{O}({_e}n n)</math> and represents the number <math>4{+}_{k=1}^{n}{\varphi (k)}-1</math> by the <math>\varphi</math>-function. For <math>m > 1</math>, the divisibility conditions neither change the error term <math>\mathcal{O}({_e}n)</math> nor the leading term. Polynomials or series such that <math>\text{gcd}({a}_{0}, {a}_{1}, ..., {a}_{m}) \ne 1</math> are excluded by <math>1/\zeta(\grave{m})</math>: The latter is given by taking the product over the prime numbers <math>p</math> of all <math>(1 - {p}^{-\grave{m}})</math> absorbing here multiples of <math>p</math> and representing sums of geometric series.<math>\square</math>
The Taylor series (see below) <math>f(z) \in \mathcal{O}(D)</math> centred on 0 on <math>D \subseteq {}^{\omega}\mathbb{C}</math> gives for <math>\grave{m}, n \in {}^{\omega}\mathbb{N}^*</math><div style="text-align:center;"><math>\int\limits_0^z...\int\limits_0^{\zeta_2}{f(\zeta_1)\text{d}\zeta_1\;...\;\text{d}\zeta_n} = \widehat{n!} f(z\mu_n) z^n.\square</math></div>
 
 
 
=== Speedup theorem for derivatives ===
 
  
For <math>\mathbb{B}_{\hat{\nu}}(0) \subset  D \subseteq {}^{\omega}\mathbb{C},</math> the Taylor series<div style="text-align:center;"><math>f(z):=f(0) + \sum\limits_{m=1}^{\omega }{\widehat{m!}\,{{f}^{(m)}}(0){z^m}},</math></div><math>b_{\varepsilon n} := \hat{\varepsilon}\,\acute{n}! = 2^j, j, n \in {}^{\omega}\mathbb{N}^{*}, \varepsilon \in ]0, r^n[, {{d}_{\varepsilon k n}}:={{\varepsilon}^{{\hat{n}}}}{e}^{\hat{n}k\tau i}</math> and <math>f</math>'s radius of convergence <math>r \in {}^{\nu}{\mathbb{R}}_{&gt;0}</math> imply<div style="text-align:center;"><math>{{f}^{(n)}}(0)=b_{\varepsilon n}\sum\limits_{k=1}^{n}{\delta_n^* f({{d}_{\varepsilon k n}})}.</math></div>
+
=== Brocard's theorem ===
 +
It holds that <math>\{(m, n) \in {}^{\omega} \mathbb{N}^2 : n! + 1 = m^2\} = \{(5, 4), (11, 5), (71, 7)\}.</math>
  
 
==== Proof: ====
 
==== Proof: ====
Taylor's theorem<ref name="Remmert">[[w:Reinhold Remmert|<span class="wikipedia">Remmert, Reinhold</span>]]: ''Funktionentheorie 1'' : 3., verb. Aufl.; 1992; Springer; Berlin; ISBN 9783540552338, S. 165 f.</ref> and the properties of the roots of unity.<math>\square</math>
+
From <math>n! = \acute{m}\grave{m}</math>, it follows that <math>m = \hat{r} \pm 1</math> für <math>r \in {}^{\omega} \mathbb{N}^{*}</math> and <math>n \ge 3</math>. Thus <math>n! = \hat{r}(\hat{r}\pm2) = 8s(\hat{s} \pm 1)</math> holds for <math>s \in {}^{\omega} \mathbb{N}^{*}</math>. Let <math>2^q \mid n!</math> and <math>2^{\grave{q}} \nmid n!</math> for maximal <math>q \in {}^{\omega} \mathbb{N}^{*}</math>. Therefore <math>n! = 2^q(\hat{u} + 1)</math> holds for <math>u \in {}^{\omega} \mathbb{N}^{*}</math> and necessarily <math>n! = 2^q(2^{q-2} \pm 1)</math>. Then the prime factorisation of <math>n!</math> requires <math>n \le 7</math> giving the claim.<math>\square</math>
  
== Reference ==
+
=== Reversion theorem of Taylor series ===
<references />
+
For <math>y \in f(\mathbb{D}), y(a) = b</math> and <math>y^{\prime}(a) \ne 0</math>, [[w:Lagrange_inversion_theorem#Lagrange–Bürmann_formula|<span class="wikipedia">Bürmann's theorem</span>]] yields:<div style="text-align:center;"><math>f^{-1}(y) = a + \tilde{n} {\LARGE{\textbf{+}}}_{m=1}^n{\widetilde{m}{\tilde{\varepsilon}}^{\acute{m}}(y - b)^m({\tilde{u}}^{\acute{m}k})^T(f(\varepsilon u^k + a)^{-m})}+\mathcal{O}(\varepsilon^n).\square</math></div>
  
 
== Recommended reading ==
 
== Recommended reading ==
  
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 
[https://en.calameo.com/books/003777977258f7b4aa332 Nonstandard Mathematics]
 +
 +
== References ==
 +
<references />
  
 
[[de:Hauptseite]]
 
[[de:Hauptseite]]

Revision as of 00:22, 18 July 2024

Welcome to MWiki

Theorems of the month

Counting theorem for algebraic numbers

The number [math]\displaystyle{ \mathbb{A}(m, n) }[/math] of algebraic numbers of polynomial or series degree [math]\displaystyle{ m }[/math] and thus in general for the Riemann zeta function [math]\displaystyle{ \zeta }[/math] asymptotically satisfies the equation [math]\displaystyle{ \mathbb{A}(m, n) = \widetilde{\zeta(\grave{m})}\,z(m){{(2n+1)}^{m}}\left( n+\mathcal{O}({_e}n) \right) }[/math], where [math]\displaystyle{ z(m) }[/math] is the average number of zeros of a polynomial or series.

Proof:

The case [math]\displaystyle{ m = 1 }[/math] requires by [1] the error term [math]\displaystyle{ \mathcal{O}({_e}n n) }[/math] and represents the number [math]\displaystyle{ 4{+}_{k=1}^{n}{\varphi (k)}-1 }[/math] by the [math]\displaystyle{ \varphi }[/math]-function. For [math]\displaystyle{ m \gt 1 }[/math], the divisibility conditions neither change the error term [math]\displaystyle{ \mathcal{O}({_e}n) }[/math] nor the leading term. Polynomials or series such that [math]\displaystyle{ \text{gcd}({a}_{0}, {a}_{1}, ..., {a}_{m}) \ne 1 }[/math] are excluded by [math]\displaystyle{ 1/\zeta(\grave{m}) }[/math]: The latter is given by taking the product over the prime numbers [math]\displaystyle{ p }[/math] of all [math]\displaystyle{ (1 - {p}^{-\grave{m}}) }[/math] absorbing here multiples of [math]\displaystyle{ p }[/math] and representing sums of geometric series.[math]\displaystyle{ \square }[/math]

Brocard's theorem

It holds that [math]\displaystyle{ \{(m, n) \in {}^{\omega} \mathbb{N}^2 : n! + 1 = m^2\} = \{(5, 4), (11, 5), (71, 7)\}. }[/math]

Proof:

From [math]\displaystyle{ n! = \acute{m}\grave{m} }[/math], it follows that [math]\displaystyle{ m = \hat{r} \pm 1 }[/math] für [math]\displaystyle{ r \in {}^{\omega} \mathbb{N}^{*} }[/math] and [math]\displaystyle{ n \ge 3 }[/math]. Thus [math]\displaystyle{ n! = \hat{r}(\hat{r}\pm2) = 8s(\hat{s} \pm 1) }[/math] holds for [math]\displaystyle{ s \in {}^{\omega} \mathbb{N}^{*} }[/math]. Let [math]\displaystyle{ 2^q \mid n! }[/math] and [math]\displaystyle{ 2^{\grave{q}} \nmid n! }[/math] for maximal [math]\displaystyle{ q \in {}^{\omega} \mathbb{N}^{*} }[/math]. Therefore [math]\displaystyle{ n! = 2^q(\hat{u} + 1) }[/math] holds for [math]\displaystyle{ u \in {}^{\omega} \mathbb{N}^{*} }[/math] and necessarily [math]\displaystyle{ n! = 2^q(2^{q-2} \pm 1) }[/math]. Then the prime factorisation of [math]\displaystyle{ n! }[/math] requires [math]\displaystyle{ n \le 7 }[/math] giving the claim.[math]\displaystyle{ \square }[/math]

Reversion theorem of Taylor series

For [math]\displaystyle{ y \in f(\mathbb{D}), y(a) = b }[/math] and [math]\displaystyle{ y^{\prime}(a) \ne 0 }[/math], Bürmann's theorem yields:

[math]\displaystyle{ f^{-1}(y) = a + \tilde{n} {\LARGE{\textbf{+}}}_{m=1}^n{\widetilde{m}{\tilde{\varepsilon}}^{\acute{m}}(y - b)^m({\tilde{u}}^{\acute{m}k})^T(f(\varepsilon u^k + a)^{-m})}+\mathcal{O}(\varepsilon^n).\square }[/math]

Recommended reading

Nonstandard Mathematics

References

  1. Scheid, Harald: Zahlentheorie : 1st Ed.; 1991; Bibliographisches Institut; Mannheim; ISBN 9783411148417, p. 323.